1
|
Zhang J, Yao L, Guo Y. Interaction of BANCR in the relationship between Hashimoto's thyroiditis and papillary thyroid carcinoma expression patterns and possible molecular mechanisms. J Gene Med 2024; 26:e3663. [PMID: 38342961 DOI: 10.1002/jgm.3663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND Previous studies have established a connection between Hashimoto's thyroiditis (HT) and an increased risk of papillary thyroid carcinoma (PTC). However, the molecular mechanisms driving this association are not well understood. The long non-coding RNA (lncRNA) BRAF-activated non-coding RNA (BANCR) has been implicated in various cancers, suggesting a potential role in the HT-PTC linkage. METHODS This study investigated the expression levels of BANCR in PTC and HT samples, compared to control tissues. We also examined the association between BANCR expression and clinicopathological features, including lymph node metastasis. Furthermore, we explored the molecular mechanisms of BANCR in PTC pathogenesis and its potential as a therapeutic target. RESULTS BANCR expression was significantly lower in PTC samples than in controls, while it was moderately increased in HT samples. In PTC cases with concurrent HT, BANCR expression was markedly reduced compared to normal tissues. Our analysis revealed BANCR's role as an oncogene in PTC, influencing various cancer-related signaling pathways. Interestingly, no significant correlation was found between BANCR expression and lymph node metastasis. CONCLUSION Our findings underscore the involvement of BANCR in the connection between HT and PTC. The distinct expression patterns of BANCR in PTC and HT, especially in PTC with concurrent HT, provide new insights into the molecular interplay between these conditions. This study opens avenues for the development of innovative diagnostic and therapeutic strategies targeting BANCR in PTC and HT.
Collapse
Affiliation(s)
- Jiabo Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lingli Yao
- Department of Breast Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yu Guo
- Department of Breast Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
2
|
Zhang W, He J, Zheng D, Zhao P, Wang Y, Zhao J, Li P. Immunomodulatory Activity and Its Mechanisms of Two Polysaccharides from Poria cocos. Molecules 2023; 29:50. [PMID: 38202633 PMCID: PMC10780076 DOI: 10.3390/molecules29010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Polyporaceae is an important fungal family that has been a source of natural products with a range of pharmaceutical activities in China. In our previous study, two polysaccharides, PCWPW and PCWPS, with significant antioxidant and antidepressant activity were obtained from Poria cocos. In this study, we evaluated their potential molecular mechanisms in the immunomodulation of macrophages. PCWPW and PCWPS were characterized by GC-MS analysis to contain 1,3-linked Glcp. ELISA assays results demonstrated that the secretion of TNF-α was significantly enhanced by PCWPW/PCWPS. RNA-seq data demonstrated that PCWPS treatment modulated the expression of immune-related genes in macrophages, which was further confirmed by RT-qPCR assays. The activation of TNF-α secretion was found to be mannose receptor (MR) dependent and suppressed by MR inhibitor pretreatment. Moreover, the amount of TNF-α cytokine secretion in PCWPW/PCWPS-induced RAW264.7 cells was decreased when pretreated with NF-κB or MAPK signaling pathway inhibitors. Collectively, our results suggested that PCWPW and PCWPS possessed immunomodulatory activity that regulates TNF-α expression through the NF-κB/MAPK signaling pathway by binding to mannose receptors. Therefore, PCWPW and PCWPS isolated from Poria cocos have potential as drug candidates for immune-related disease treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peng Li
- Shanxi Key Laboratory for Modernization of TCVM, Department of Basic Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (J.H.); (D.Z.); (P.Z.); (Y.W.); (J.Z.)
| |
Collapse
|
3
|
Zhang F, Zhu T, Wu C, Shen D, Liu L, Chen X, Guan Y, Ding H, Tong X. TRIM28 recruits E2F1 to regulate CBX8-mediated cell proliferation and tumor metastasis of ovarian cancer. Hum Cell 2023; 36:2113-2128. [PMID: 37709991 DOI: 10.1007/s13577-023-00983-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023]
Abstract
Chromobox protein homolog 8 (CBX8) is a transcriptional suppressor participated in various cancers. However, the function and mechanism of CBX8 in the progression of ovarian cancer (OC) are unclear. In this study, we found that CBX8 was upregulated in OC tissues originating from GEPIA and TNM databases, OC patients' samples from hospital, and OC cell lines. Furthermore, CBX8 knockdown by short hairpin RNA (shRNA) technology markedly inhibited proliferation and invasion, induced migration, cell cycle arrest, and apoptosis in vitro. Mechanistically, CBX8 activated PI3K/AKT/mTOR signaling pathway to take effect. In addition, TRIM28 and E2F1 were enriched in OC tissues from the TNM database and OC patients' samples similar to the results of CBX8. Correlation analysis indicated positive correlations among TRIM28, E2F1, and CBX8. E2F1 was proved to bind to the promoter regions of CBX8 and TRIM28, while TRIM28 recruited E2F1 to increase the expression of CBX8 to further increase cell viability, proliferation, and invasion, and decrease migration, apoptosis, and cell cycle progression. Finally, CBX8 or TRIM28 knockdown repressed tumor growth and metastasis of OC in vivo. Therefore, our study showed that the promoting effect of CBX8 on tumor growth and metastasis of OC was participated in the PI3K/AKT/mTOR signaling, TRIM28 and E2F1. Our findings suggested that CBX8 could serve as a potential marker and therapeutic target for OC patients.
Collapse
Affiliation(s)
- Fubin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315010, Zhejiang Province, China
| | - Tianhong Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315010, Zhejiang Province, China
| | - Chenghao Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Dongsheng Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315010, Zhejiang Province, China
| | - Xueqin Chen
- Department of Traditional Medicine, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315010, Zhejiang Province, China
| | - Yutao Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315010, Zhejiang Province, China.
| | - Huiqing Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315010, Zhejiang Province, China.
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|