1
|
Kulkarni R, Patil SR, Lingamdinne LP, Chodankar N, Chang YY, Bae J, Koduru JR. Graphitic Carbon Nitride-Supported Layered Double Hydroxides (GCN@FeMg-LDH) for Efficient Water Splitting and Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9253-9265. [PMID: 39878617 DOI: 10.1021/acsami.4c17996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The advancement of highly efficient and cost-effective electrocatalysts for electrochemical water splitting, along with the development of triboelectric nanogenerators (TENGs), is crucial for sustainable energy generation and harvesting. In this study, a novel hybrid composite by integrating graphitic carbon nitride (GCN) with an earth-abundant FeMg-layered double hydroxide (LDH) (GCN@FeMg-LDH) was synthesized by the hydrothermal approach. Under controlled conditions, with optimized concentrations of metal ions and GCN, the fabricated electrode, GCN@FeMg-LDH demonstrated remarkably low overpotentials of 0.018 and 0.284 V and 0.101 and 0.365 V at 10 and 600 mA/cm2 toward the hydrogen evolution (HER) and oxygen evolution (OER) reactions, respectively, in 1.0 M KOH. Furthermore, we leveraged the potential of the GCN@FeMg-LDH composite to develop a high-performance TENG suitable for practical electronic applications. The resulting GCN@FeMg-LDH-based TENG device, sized at 3 × 4 cm2, demonstrated a substantial current output of 52 μA and a voltage output of 771 V. Notably, this TENG device exhibited an instantaneous power output of 5780 μW and exceptional stability, enduring over 15 000 cycles. Thus, this study concludes that the GCN@FeMg-LDH composite emerges as a superior candidate for applications in water splitting and TENGs, exhibiting significant promise for advancing clean energy technologies, in addition to lowering greenhouse gas emissions.
Collapse
Affiliation(s)
- Rakesh Kulkarni
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Swapnil R Patil
- Department of Ocean System Engineering, Jeju National University, 102 Jejudaehakro, Jeju 63243, Korea
| | | | - Nilesh Chodankar
- Mechanical Engineering Department, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Yoon-Young Chang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Jinho Bae
- Department of Ocean System Engineering, Jeju National University, 102 Jejudaehakro, Jeju 63243, Korea
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| |
Collapse
|
2
|
Shabanur Matada MS, Kuppuswamy GP, Sasi S, Velappa Jayaraman S, Nutalapati V, Senthil Kumar S, Sivalingam Y. Pyrene Derivative Incorporated Ni MOF as an Enzyme Mimic for Noninvasive Salivary Glucose Detection Toward Diagnosis of Diabetes Mellitus. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17219-17231. [PMID: 38561895 DOI: 10.1021/acsami.3c19431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein, we demonstrate the detection of glucose in a noninvasive and nonenzymatic manner by utilizing an extended gate field-effect transistor (EGFET) based on the organic molecule pyrene phosphonic acid (PyP4OH8) incorporated nickel metal-organic framework (NiOM-MOF). The prepared electrode responds selectively to glucose instead of sucrose, fructose, maltose, ascorbic acid, and uric acid in a 1× phosphate buffer saline solution. Also, utilizing the scanning Kelvin probe system, the sensing electrode's work function (Φ) is measured to validate the glucose-sensing mechanism. The sensitivity, detection range, response time, limit of detection, and limit of quantification of the electrode are determined to be 24.5 μA mM-1 cm-2, 20 μM to 10 mM, less than 5 s, 2.73 μM, and 8.27 μM, respectively. Most interestingly, the developed electrode follows the Michaelis-Menten kinetics, and the calculated rate constant (km) 0.07 mM indicates a higher affinity of NiOM-MOF toward glucose. The real-time analysis has revealed that the prepared electrode is sensitive to detect glucose in real human saliva, and it can be an alternative device for the noninvasive detection of glucose. Overall, the outcomes of the EGFET studies demonstrate that the prepared electrodes are well-suited for expeditious detection of glucose levels in saliva.
Collapse
Affiliation(s)
- Mallikarjuna Swamy Shabanur Matada
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur, Tamil Nadu 603203, India
| | - Guru Prasad Kuppuswamy
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur, Tamil Nadu 603203, India
| | - Sheethal Sasi
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur, Tamil Nadu 603203, India
| | - Surya Velappa Jayaraman
- Novel, Advanced, and Applied Materials (NAAM) Laboratory, Department of Physics and Nanotechnology, SRMIST, Kattankulathur, Tamil Nadu 603203, India
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Aoba-ku, Sendai Miyagi 980-8579, Japan
| | - Venkatramaiah Nutalapati
- Functional Materials Laboratory, Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Shanmugam Senthil Kumar
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute (CSIR-CECRI) Campus, Karaikudi, Tamil Nadu 630006, India
| | - Yuvaraj Sivalingam
- Laboratory of Sensors, Energy and Electronic Devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur, Tamil Nadu 603203, India
- Sensors Lab, Computer, Electrical, and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|