1
|
Lu Y, Chen Y, Hou G, Lei H, Liu L, Huang X, Sun S, Liu L, Liu X, Na J, Zhao Y, Cheng L, Zhong L. Zinc-Iron Bimetallic Peroxides Modulate the Tumor Stromal Microenvironment and Enhance Cell Immunogenicity for Enhanced Breast Cancer Immunotherapy Therapy. ACS NANO 2024; 18:10542-10556. [PMID: 38561324 DOI: 10.1021/acsnano.3c12615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Immunotherapy has emerged as a potential approach for breast cancer treatment. However, the rigid stromal microenvironment and low immunogenicity of breast tumors strongly reduce sensitivity to immunotherapy. To sensitize patients to breast cancer immunotherapy, hyaluronic acid-modified zinc peroxide-iron nanocomposites (Fe-ZnO2@HA, abbreviated FZOH) were synthesized to remodel the stromal microenvironment and increase tumor immunogenicity. The constructed FZOH spontaneously generated highly oxidative hydroxyl radicals (·OH) that degrade hyaluronic acid (HA) in the tumor extracellular matrix (ECM), thereby reshaping the tumor stromal microenvironment and enhancing blood perfusion, drug penetration, and immune cell infiltration. Furthermore, FZOH not only triggers pyroptosis through the activation of the caspase-1/GSDMD-dependent pathway but also induces ferroptosis through various mechanisms, including increasing the levels of Fe2+ in the intracellular iron pool, downregulating the expression of FPN1 to inhibit iron efflux, and activating the p53 signaling pathway to cause the failure of the SLC7A11-GSH-GPX4 signaling axis. Upon treatment with FZOH, 4T1 cancer cells undergo both ferroptosis and pyroptosis, exhibiting a strong immunogenic response. The remodeling of the tumor stromal microenvironment and the immunogenic response of the cells induced by FZOH collectively compensate for the limitations of cancer immunotherapy and significantly enhance the antitumor immune response to the immune checkpoint inhibitor αPD-1. This study proposes a perspective for enhancing immune therapy for breast cancer.
Collapse
Affiliation(s)
- Yujie Lu
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Youdong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Guanghui Hou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Huali Lei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Lin Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xuan Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Shumin Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Luyao Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Xiyu Liu
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Jintong Na
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Yongxiang Zhao
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Liang Cheng
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Liping Zhong
- Institute of State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, China
| |
Collapse
|
2
|
Alfonso-González JG, Granja-Banguera CP, Morales-Morales JA, Dector A. A Facile Glycerol-Assisted Synthesis of Low-Cu 2+-Doped CoFe 2O 4 for Electrochemical Sensing of Acetaminophen. BIOSENSORS 2023; 13:997. [PMID: 38131757 PMCID: PMC10741980 DOI: 10.3390/bios13120997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
This work devised a simple glycerol-assisted synthesis of a low-Cu2+-doped CoFe2O4 and the electrochemical detection of acetaminophen (AC). During the synthesis, several polyalcohols were tested, indicating the efficiency of glycerin as a cosolvent, aiding in the creation of electrode-modifier nanomaterials. A duration of standing time (eight hours) before calcination produces a decrease in the secondary phase of hematite. The synthesized material was used as an electrode material in the detection of AC. In acidic conditions (pH 2.5), the limit of detection (LOD) was 99.4 nM, while the limit of quantification (LOQ) was found to be (331 nM). The relative standard deviation (RSD), 3.31%, was computed. The enhanced electrocatalytic activity of a low-Cu2+-doped CoFe2O4-modified electrode Cu0.13Co0.87Fe2O4/GCE corresponds extremely well with its resistance Rct, which was determined using the electrochemical impedance spectroscopy (EIS) technique and defined its electron transfer capacity. The possibility of a low-Cu2+-doped CoFe2O4 for the electrochemical sensing of AC in human urine samples was studied. The recovery rates ranging from 96.5 to 101.0% were obtained. These findings suggested that the Cu0.13Co0.87Fe2O4/GCE sensor has outstanding practicability and could be utilized to detect AC content in real complex biological samples.
Collapse
Affiliation(s)
- José Guillermo Alfonso-González
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Campus Pampalinda, Universidad Santiago de Cali, Cali 760035, Colombia; (J.G.A.-G.); (C.P.G.-B.)
| | - Claudia Patricia Granja-Banguera
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Campus Pampalinda, Universidad Santiago de Cali, Cali 760035, Colombia; (J.G.A.-G.); (C.P.G.-B.)
| | - Jimmy Alexander Morales-Morales
- Grupo de Investigación en Química y Biotecnología (QUIBIO), Facultad de Ciencias Básicas, Campus Pampalinda, Universidad Santiago de Cali, Cali 760035, Colombia; (J.G.A.-G.); (C.P.G.-B.)
| | - Andrés Dector
- CONAHCYT (Consejo Nacional de Humanidades, Ciencias y Tecnologías), Universidad Tecnológica de San Juan del Río, San Juan del Río 76800, Querétaro, Mexico;
| |
Collapse
|
3
|
Chchiyai Z, El Ghali O, Lahmar A, Alami J, Manoun B. Design and Performance of a New Zn 0.5Mg 0.5FeMnO 4 Porous Spinel as Anode Material for Li-Ion Batteries. Molecules 2023; 28:7010. [PMID: 37894488 PMCID: PMC10608844 DOI: 10.3390/molecules28207010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/23/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Due to the low capacity, low working potential, and lithium coating at fast charging rates of graphite material as an anode for Li-ion batteries (LIBs), it is necessary to develop novel anode materials for LIBs with higher capacity, excellent electrochemical stability, and good safety. Among different transition-metal oxides, AB2O4 spinel oxides are promising anode materials for LIBs due to their high theoretical capacities, environmental friendliness, high abundance, and low cost. In this work, a novel, porous Zn0.5Mg0.5FeMnO4 spinel oxide was successfully prepared via the sol-gel method and then studied as an anode material for Li-ion batteries (LIBs). Its crystal structure, morphology, and electrochemical properties were, respectively, analyzed through X-ray diffraction, high-resolution scanning electron microscopy, and cyclic voltammetry/galvanostatic discharge/charge measurements. From the X-ray diffraction, Zn0.5Mg0.5FeMnO4 spinel oxide was found to crystallize in the cubic structure with Fd3¯m symmetry. However, the Zn0.5Mg0.5FeMnO4 spinel oxide exhibited a porous morphology formed by interconnected 3D nanoparticles. The porous Zn0.5Mg0.5FeMnO4 anode showed good cycling stability in its capacity during the initial 40 cycles with a retention capacity of 484.1 mAh g-1 after 40 cycles at a current density of 150 mA g-1, followed by a gradual decrease in the range of 40-80 cycles, which led to reaching a specific capacity close to 300.0 mAh g-1 after 80 cycles. The electrochemical reactions of the lithiation/delithiation processes and the lithium-ion storage mechanism are discussed and extracted from the cyclic voltammetry curves.
Collapse
Affiliation(s)
- Zakaria Chchiyai
- Rayonnement-Matière et Instrumentation, S3M, FST, Hassan First University of Settat, Settat 26000, Morocco; (Z.C.); (O.E.G.); (B.M.)
| | - Oumayema El Ghali
- Rayonnement-Matière et Instrumentation, S3M, FST, Hassan First University of Settat, Settat 26000, Morocco; (Z.C.); (O.E.G.); (B.M.)
| | - Abdelilah Lahmar
- Laboratoire de Physique de la Matière Condensée (LPMC), Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens, France
| | - Jones Alami
- Materials Science, Energy, and Nano-Engineering Department, University Mohammed VI Polytechnic, Ben Guerir 43150, Morocco;
| | - Bouchaib Manoun
- Rayonnement-Matière et Instrumentation, S3M, FST, Hassan First University of Settat, Settat 26000, Morocco; (Z.C.); (O.E.G.); (B.M.)
- Materials Science, Energy, and Nano-Engineering Department, University Mohammed VI Polytechnic, Ben Guerir 43150, Morocco;
| |
Collapse
|