1
|
Liu J, Li C, Yang Y, Li J, Sun X, Zhang Y, Liu R, Chen F, Li X. Special correlation between diet and MASLD: positive or negative? Cell Biosci 2025; 15:44. [PMID: 40221799 PMCID: PMC11992798 DOI: 10.1186/s13578-025-01382-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic and systemic metabolic liver disease characterized by the presence of hepatic steatosis and at least one cardiometabolic risk factor (CMRF). The pathogenesis of MASLD involves multiple mechanisms, including lipid metabolism disorders, insulin resistance, inflammatory responses, and the hepato-intestinal axis of metabolic dysfunction. Among these factors, diet serves as both an inducement and a potential remedy in the disease's development. Notably, a high-lipid diet exacerbates fat accumulation, oxidative stress, and inflammatory responses, thereby promoting the progression of MASLD. Consequently, dietary induction models have become vital tools for studying the pathological mechanisms of MASLD, providing a foundation for identifying potential therapeutic targets. Additionally, we summarize the therapeutic effects of dietary optimization on MASLD and elucidate the role of specific dietary components in regulating the hepato-intestinal axis, lipid metabolism, and inhibiting inflammatory responses. In conclusion, studies utilizing animal models of MASLD offer significant insights into dietary therapy, particularly concerning the regulation of lipid metabolism-related and hepatoenteric axis-related signaling pathways as well as the beneficial mechanism of probiotics in hepatoenteric regulation. By understanding the specific mechanisms by which different dietary patterns affect MASLD, we can assess the clinical applicability of current dietary strategies and provide new directions for research and treatment aimed at disease modification.
Collapse
Affiliation(s)
- Jia Liu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changmeng Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yun Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingtao Li
- Departments of Infectious Disease, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China
| | - Xiaoguang Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yinqiang Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fafeng Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
2
|
Paduchová Z, Gajdošová L, Katrenčíková B, Horváthová M, Országhová Z, Andrezálová L, Muchová J. Synergistic Effects of Omega-3 Fatty Acids and Physical Activity on Oxidative Stress Markers and Antioxidant Mechanisms in Aged Rats. Nutrients 2024; 17:96. [PMID: 39796529 PMCID: PMC11723026 DOI: 10.3390/nu17010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Aging induces degenerative processes in the body, contributing to the onset of various age-associated diseases that affect the population. Inadequate dietary habits and low physical activity are major contributors to increased morbidity during aging. This study aimed to investigate the combined effects of omega-3 fatty acid supplementation and physical activity on the markers of oxidative stress and antioxidant defense mechanisms in aged male Wistar rats (23-24 months). METHODS The rats were randomly divided into four experimental groups: a sedentary control (placebo, no exercise), a trained (placebo and moderate-intensity graded aerobic exercise; Ex), and two trained groups supplemented with low (160 mg/kg of body weight; O1 + Ex) and high (320 mg/kg of body weight; O2 + Ex) doses of omega-3 fatty acids. The biochemical and functional parameters related to sarcopenia and the markers of oxidative stress were measured in blood and gastrocnemius muscle. RESULTS The results demonstrated dose-dependent, synergistic effects of omega-3 fatty acid supplementation and physical activity. The higher dose (320 mg/kg of body weight) improved plasma antioxidant capacity (TEAC, +21.01%, p < 0.01) and GPx activity (+78.05%, p < 0.05) while reducing CAT activity in erythrocytes (-19.92%, p < 0.05), likely as an adaptive stress response. Combined interventions also normalized cholesterol levels, improved the functional parameters of sarcopenia (stride length, +14.82%, p < 0.001), and enhanced antioxidant protection in aged rats. CONCLUSIONS These findings highlight the potential of combining omega-3 fatty acid supplementation and physical activity to counteract aging-related degenerative changes. Further research is needed to elucidate the underlying mechanisms and evaluate the long-term benefits of these strategies in aging populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jana Muchová
- Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, Faculty of Medicine, Sasinkova 2, 811 08 Bratislava, Slovakia; (Z.P.); (L.G.); (B.K.); (M.H.); (Z.O.); (L.A.)
| |
Collapse
|
3
|
Alwaili MA, Abu-Almakarem AS, Aljohani S, Alkhodair SA, Al-Bazi MM, Eid TM, Alamri J, Mobasher MA, K. Algarza N, A. Khayyat AI, Alshaygy LS, El-Said KS. Avenanthramide-C ameliorate doxorubicin-induced hepatotoxicity via modulating Akt/GSK-3β and Wnt-4/β-Catenin pathways in male rats. Front Mol Biosci 2024; 11:1507786. [PMID: 39687571 PMCID: PMC11646862 DOI: 10.3389/fmolb.2024.1507786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024] Open
Abstract
Background Doxorubicin (DOX) drugs used in cancer treatment can cause various adverse effects, including hepatotoxicity. Natural-derived constituents have shown promising effects in alleviating chemotherapy-induced toxicities. This study addressed the effect of Avenanthramides-C (AVN-C) treatment in rats with DOX-indued hepatotoxicity. Methods AutoDock Vina was used for the molecular docking investigations. In silico toxicity prediction for AVN-C and DOX was performed using the Pro Tox-III server. Four groups of ten male Sprague-Dawley rats were created: Group 1 (Gp1) served as a negative control, Gp2 received an intraperitoneal (i.p.) injection of AVN-C (10 mg/kg), Gp3 received an i.p. dose of DOX (4 mg/kg) weekly for a month, and Gp4 received the same dose of DOX as G3 and AVN-C as G2. Histopathological, molecular, and biochemical analyses were conducted 1 month later. Results The study showed that treatment with AVN-C significantly ameliorated DOX-induced hepatotoxicity in rats by restoring biochemical alterations, boosting antioxidant activity, reducing inflammation, and modulating the Akt/GSK-3β and Wnt-4/β-Catenin signaling pathways in male rats. Conclusion This study is the first to demonstrate the therapeutic effects of AVN-C therapy on DOX-induced liver damage in male rats. Therefore, AVN-C could have a pronounced palliative effect on the hepatotoxicity caused by DOX treatment. These findings suggest that AVN-C could potentially alleviate the hepatotoxicity associated with DOX-based chemotherapy.
Collapse
Affiliation(s)
- Maha Abdullah Alwaili
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amal S. Abu-Almakarem
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al Bahah, Saudi Arabia
| | - Salwa Aljohani
- Chemistry Department, Faculty of Science, Taibah University, Yanbu, Saudi Arabia
| | | | - Maha M. Al-Bazi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamir M. Eid
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jehan Alamri
- Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maysa A. Mobasher
- Department of Pathology, Biochemistry Division, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Norah K. Algarza
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Arwa Ishaq A. Khayyat
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Luluah Saleh Alshaygy
- Biochemistry Department, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
4
|
Zhou YF, Fu Y, Lai ZQ, Xu HL, Shen N, Long J, Zhang H, Dong YF. Heat shock protein 22 alleviates doxorubicin-induced kidney injury by suppressing oxidative stress and apoptosis. Sci Rep 2024; 14:23527. [PMID: 39384968 PMCID: PMC11464695 DOI: 10.1038/s41598-024-75277-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024] Open
Abstract
This study investigated the effects of heat shock protein 22 (HSP22) against doxorubicin (DOX)-induced kidney injury. Mice were randomly assigned to four groups: CON, ad-HSP22, DOX, and ad-HSP22 + DOX. Adeno-associated virus carrying the HSP22 gene (ad-HSP22) was administered via tail vein injection for four weeks, followed by intraperitoneal simulation with DOX (20 mg/kg) for another five days. Upon euthanasia, ELISA, histological staining (H&E, IHC, DHE, and TUNEL), and western blot analyses were employed to assess relevant markers. Serum biomarkers of kidney injury, SCr, and BUN, were upregulated after DOX administration but normalized with HSP22 overexpression. Pathological changes induced by DOX were also reversed by HSP22 overexpression in H&E, IHC, DHE, and TUNEL stains. DOX-induced upregulation of NOX-2 and NOX-4 and downregulation of SOD-1 and SOD-2 were reversed by HSP22 overexpression. Similarly, DOX-induced increases in Bax and decrease in Bcl-2 were attenuated by HSP22 overexpression. The study further demonstrated that the Nrf2/HO-1 signaling pathway was activated by HSP22 overexpression. In vitro experiments corroborated the findings from in vivo experiments. In conclusion, HSP22 alleviates DOX-induced kidney injury by suppressing oxidative stress and apoptosis, primarily through the activation of the Nrf2/HO-1 signaling pathway. These results suggest HSP22 as a potential therapeutic target for DOX-induced kidney injury.
Collapse
Affiliation(s)
- Yuan-Feng Zhou
- The 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Department of Cardiology, Jiujiang Third People's Hospital, Jiujiang, China
| | - Yang Fu
- The 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ze-Qun Lai
- The 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Hai-Ling Xu
- Department of Cardiology, Jiujiang Third People's Hospital, Jiujiang, China
| | - Na Shen
- Department of Cardiology, Jiujiang Third People's Hospital, Jiujiang, China
| | - Jun Long
- Department of Cardiology, Jiujiang Third People's Hospital, Jiujiang, China
| | - Huang Zhang
- The 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yi-Fei Dong
- The 2nd affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
5
|
Atakisi E, Atakisi O, Ozturkler M, Dalginli KY, Ozbey C. Investigation of the Effect of Omega-3 Fatty Acids on Antioxidant System and Serum Aluminum, Zinc, and Iron Levels in Acute Aluminum Toxicity. Biol Trace Elem Res 2024:10.1007/s12011-024-04402-2. [PMID: 39365382 DOI: 10.1007/s12011-024-04402-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Aluminum (Al), one of the three most prevalent metals in the Earth's crust, adversely impacts all metabolic systems of living organisms due to its extensive utilization by humans. It is known that omega-3 fatty acids (ω-3FA) protect the organism against diseases and have positive effects on the immune system. The aim of the study was to investigate the effect of ω-3FA on 8-OH-2-deoxyguanosine (8-OHdG), glutathione (GSH) levels and adenosine deaminase (ADA), paraoxonase (PON), and catalase (CAT) activities in rats with acute aluminum toxicity. The study also aimed to investigate the antioxidant system, as well as Al, zinc (Zn), and iron (Fe) levels. Forty Sprague-Dawley rats (n = 40) were used in the study and the rats were divided into four equal groups (n = 10). In group I, 0.5 mL of 0.9% saline solution (NaCI) was injected intraperitoneally. Group II was injected with 34 mg/kg aluminum chloride (AlCI3) intraperitoneally. Group III received 400 mg/kg ω-3FA for 7 days and group IV received both AlCI3 and 400 mg/kg ω-3FA for 7 days. At the end of the study, blood samples were obtained by cardiac puncture. The findings showed that Al exposure increased serum 8-OHdG and total oxidant status (TOS) levels, as well as ADA activity, which are markers associated with oxidative damage. Conversely, PON and CAT activities, GSH, and total antioxidant status (TAS) levels decreased compared to the control group. Furthermore, Zn and Fe levels decreased as Al levels increased. In conclusion, Al has the capacity to induce oxidative damage and lipid peroxidation, while ω-3 fatty acids may mitigate this damage through a regulatory mechanism. Moreover, ω-3-FA could be used as a therapeutic agent that reduces Al toxicity.
Collapse
Affiliation(s)
- Emine Atakisi
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafkas University, Kars, Turkey.
| | - Onur Atakisi
- Departments of Chemistry, Faculty of Science and Letter, Kafkas University, Kars, Turkey
| | - Melek Ozturkler
- Department of Chemistry and Chemical Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Kezban Yildiz Dalginli
- Department of Chemistry and Chemical Processing Technologies, Kars Vocational School, Kafkas University, Kars, Turkey
| | - Cagatay Ozbey
- Department of Medical Services and Techniques, Atatürk Vocational School of Health Services, Kafkas University, Kars, Turkey
| |
Collapse
|
6
|
Abd-Elmonsif NM, Gamal S. The implications of atorvastatin administration and the potential protective role of omega-3 on the submandibular salivary gland of albino rats (Histological, Histochemical, Ultrastructure, and Biochemical Study). JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 126:102097. [PMID: 39357807 DOI: 10.1016/j.jormas.2024.102097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Hyperlipidemia is a risky condition that can lead to atherosclerosis and other cardiovascular problems. Statins are used to treat hyperlipidemia. The most recommended medicine to treat hyperlipidemia is atorvastatin. On the contrary, clinical trials validated statins' negative effects. Omega-3 fatty acids have antioxidant properties and have been shown to improve a variety of disease processes in the general population, including inflammatory and immunological pathways, various cardiovascular diseases, and lipid regulation. The present research aimed to determine how atorvastatin affected the submandibular salivary gland (SMG) and whether omega-3 may have a protective impact. METHODS Thirty adult male albino rats were divided into three equal groups and received drugs orally as a single daily dose for one week. Control group (I): received normal saline. Atorvastatin group (II): received a dose of 80 mg Kg-1 of Atorvastatin. Group III: received Omega-3 before Atorvastatin. All rats were sacrificed 2 h following the last dose, and blood samples were gathered for the biochemical study of fasting blood glucose level (FBGL). Specimens were obtained and processed for histological and histochemical studies. RESULTS Atorvastatin-treated rats showed degeneration of SMG acini. The acinar cells showed cytoplasmic vacuoles with dilated RER. Histochemical results revealed a marked decrease in total proteins. The biochemical study revealed an elevation in FBGL. The administration of Omega-3 with Atorvastatin minimizes these changes. CONCLUSION Atorvastatin has been proven to induce histological changes in SMG, and these changes can be attenuated by Omega-3. However, Omega-3 has no effect on FBGL.
Collapse
Affiliation(s)
- Nehad M Abd-Elmonsif
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo, Egypt.
| | - Sherif Gamal
- Research Labs Supervisor, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
| |
Collapse
|
7
|
Jin Z, Xiao X, Gui L, Lu Q, Zhang J. Determination of doxorubicin in plasma and tissues of mice by UPLC-MS/MS and its application to pharmacokinetic study. Heliyon 2024; 10:e35123. [PMID: 39157405 PMCID: PMC11328074 DOI: 10.1016/j.heliyon.2024.e35123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
A rapid and sensitive ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was established for the simultaneous determination of doxorubicin (DOX) in mouse plasma and tissues, including the heart, liver, spleen, lung, kidney and tumor, and to investigate the pharmacokinetics and distribution in mice. In this study, daunorubicin (DNR) was used as an internal standard, and the mobile phase consisted of ammonium formate 2 mM containing 0.1 % formic acid (A) and acetonitrile (B), the chromatographic column was ACQUITY UPLC BEHTM C18 with a gradient elution at a flow rate of 0.2 mL/min. Electrospray ionization (ESI) in positive ion pattern was utilized for the ion separation of DOX, with the ions used for quantitative analysis being DOX m/z 544.28 → 397.10 and DNR m/z 528.35 → 321.08, respectively. The results showed that a good linear relationship in the calibration curve range of 1-800 ng/mL in mouse plasma and 1-2500 ng/g in tissues (R2 > 0.99) with the limits of quantification of 1 ng/mL in plasma and tissues. The method exhibited good matrix effect and extraction recovery, with the intra-day and inter-day precision of plasma and tissue were less than 10.3 % and 15.4 %, and the relative error (RE) were both less than ±14.8 % and ±18.9 %, respectively. The stability results under different conditions were found to be accurate. It also revealed the distribution of DOX in various tissues of mice, with the concentration ranking as liver > heart > kidney > spleen > lung > tumor. This method was successfully used to the study for the pharmacokinetics in plasma and drug distribution in tissues of BALB/c mice.
Collapse
Affiliation(s)
- Zhilin Jin
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xue Xiao
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Lili Gui
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Qiao Lu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Jicai Zhang
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| |
Collapse
|
8
|
Rojas-Solé C, Torres-Herrera B, Gelerstein-Claro S, Medina-Pérez D, Gómez-Venegas H, Alzolay-Sepúlveda J, Chichiarelli S, Saso L, Rodrigo R. Cellular Basis of Adjuvant Role of n-3 Polyunsaturated Fatty Acids in Cancer Therapy: Molecular Insights and Therapeutic Potential against Human Melanoma. APPLIED SCIENCES 2024; 14:4548. [DOI: 10.3390/app14114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Human melanoma is a highly aggressive malignant tumor originating from epidermal melanocytes, characterized by intrinsic resistance to apoptosis and the reprogramming of proliferation and survival pathways during progression, leading to high morbidity and mortality rates. This malignancy displays a marked propensity for metastasis and often exhibits poor responsiveness to conventional therapies. Fatty acids, such as n-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic and eicosapentaenoic acids, exert various physiological effects on melanoma, with increasing evidence highlighting the anti-tumorigenic, anti-inflammatory, and immunomodulatory properties. Additionally, n-3 PUFAs have demonstrated their ability to inhibit cancer metastatic dissemination. In the context of cancer treatment, n-3 PUFAs have been investigated in conjunction with chemotherapy as a potential strategy to mitigate severe chemotherapy-induced side effects, enhance treatment efficacy and improve safety profiles, while also enhancing the responsiveness of cancer cells to chemotherapy. Furthermore, dietary intake of n-3 PUFAs has been associated with numerous health benefits, including a decreased risk and improved prognosis in conditions such as heart disease, autoimmune disorders, depression and mood disorders, among others. However, the specific mechanisms underlying their anti-melanoma effects and outcomes remain controversial, particularly when comparing findings from in vivo or in vitro experimental studies to those from human trials. Thus, the objective of this review is to present data supporting the potential role of n-3 PUFA supplementation as a novel complementary approach in the treatment of malignant cancers such as melanoma.
Collapse
Affiliation(s)
- Catalina Rojas-Solé
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Benjamín Torres-Herrera
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Santiago Gelerstein-Claro
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Diego Medina-Pérez
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Haziel Gómez-Venegas
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Javier Alzolay-Sepúlveda
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| | - Silvia Chichiarelli
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Faculty of Pharmacy and Medicine Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
9
|
Iacobelli S, Lapillonne A, Boubred F. Early postnatal nutrition and renal consequences in preterm infants. Pediatr Res 2024:10.1038/s41390-024-03080-z. [PMID: 38374220 DOI: 10.1038/s41390-024-03080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/06/2024] [Accepted: 01/20/2024] [Indexed: 02/21/2024]
Abstract
Perinatal nutritional factors may lead to decreased nephron endowment, decreased kidney function, and long-term development of chronic kidney disease and non-communicable diseases. At the same time, optimal postnatal nutrition and catch-up growth are associated with better neurodevelopmental outcomes in preterm infants. Therefore, nutritional management of preterm infants is a major challenge for neonatologists. In this context, the Section of Nutrition, Gastroenterology and Metabolism reviewed the current knowledge on nutritional issues related to kidney function. This narrative review discusses the clinical impact of early postnatal nutrition on long-term kidney function. In preterm infants, data are largely lacking to determine the extent to which early nutrition contributes to nephrogenesis and nephron endowment. However, some nutritional principles may help clinicians better protect the developing kidney in preterm infants. IMPACT: Clinical data show that preterm infants are an emerging population at high risk for chronic kidney disease. Both undernutrition and overnutrition can alter long-term kidney function. In preterm infants, data are largely lacking to determine the extent to which early postnatal nutrition contributes to nephrogenesis, nephron endowment and increased risk for chronic kidney disease. Some nutritional principles may help clinicians better protect the developing kidney in preterm infants: avoiding extrauterine growth restriction; providing adequate protein and caloric intakes; limiting exposure to high and prolonged hyperglycaemia; avoiding micronutrient deficiencies and maintaining acid-base and electrolyte balance.
Collapse
Affiliation(s)
- Silvia Iacobelli
- Réanimation Néonatale et Pédiatrique, CHU La Réunion, Saint-Pierre, France.
- Centre d'Études Périnatales de l'Océan Indien (UR7388), Université de La Réunion, de La Réunion, France.
| | - Alexandre Lapillonne
- Service de Médecine néonatale, CHU La Conception, APHM, Marseille, France
- Aix-Marseille Université, C2VN, INRAe, INSERM, Marseille, France
| | - Farid Boubred
- Department of Neonatology, APHP, Necker-Enfants Malades University Hospital, EHU 7328 Paris Cite University Paris, Paris, France
- CNRC Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
El-Said KS, Haidyrah AS, Mobasher MA, Khayyat AIA, Shakoori A, Al-Sowayan NS, Barnawi IO, Mariah RA. Artemisia annua Extract Attenuate Doxorubicin-Induced Hepatic Injury via PI-3K/Akt/Nrf-2-Mediated Signaling Pathway in Rats. Int J Mol Sci 2023; 24:15525. [PMID: 37958509 PMCID: PMC10647718 DOI: 10.3390/ijms242115525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Doxorubicin (DOX), which is used to treat cancer, has harmful effects that limit its therapeutic application. Finding preventative agents to thwart DOX-caused injuries is thus imperative. Artemisia annua has numerous biomedical uses. This study aims to investigate the attenuative effect of Artemisia annua leaf extract (AALE) treatment on DOX-induced hepatic toxicity in male rats. A phytochemical screening of AALE was evaluated. Forty male rats were used; G1 was a negative control group, G2 was injected with AALE (150 mg/kg) intraperitoneally (i.p) daily for a month, 4 mg/kg of DOX was given i.p to G3 once a week for a month, and G4 was injected with DOX as G3 and with AALE as G2. Body weight changes and biochemical, molecular, and histopathological investigations were assessed. The results showed that AALE contains promising phytochemical constituents that contribute to several potential biomedical applications. AALE mitigated the hepatotoxicity induced by DOX in rats as evidenced by restoring the alterations in the biochemical parameters, antioxidant gene expression, and hepatic histopathological alterations in rats. Importantly, the impact of AALE against the hepatic deterioration resulting from DOX treatment is through activation of the PI-3K/Akt/Nrf-2 signaling, which in turn induces the antioxidant agents.
Collapse
Affiliation(s)
- Karim Samy El-Said
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt;
| | - Ahmed S. Haidyrah
- Digital & Smart Laboratories (DSL), King Abdulaziz City for Science & Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Maysa A. Mobasher
- Department of Pathology, Biochemistry Division, College of Medicine, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Arwa Ishaq A. Khayyat
- Biochemistry Department, Science College, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Afnan Shakoori
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | | | - Ibrahim Omar Barnawi
- Department of Biological Sciences, Faculty of Science, Taibah University, Al-Madinah Al-Munawwarah 41321, Saudi Arabia;
| | - Reham A. Mariah
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| |
Collapse
|