1
|
Chen MM, Guo X, Li TQ, He XX, Wen DY, Hang XC, Lu AD, Zhou ZH, Wang QM, Wang ZW. Discovery of new pesticide candidates from nature: design, synthesis and bioactivity research of rutaecarpine derivatives. PEST MANAGEMENT SCIENCE 2025; 81:277-287. [PMID: 39311339 DOI: 10.1002/ps.8430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/14/2024] [Accepted: 09/09/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND The invasion of viruses and fungi can cause pathological changes in the normal growth of plants and is an important factor in causing plant infectious diseases. These pathogenic microorganisms can also secrete toxic metabolites, affecting crop quality and posing a threat to human health. In this work, we selected the natural product rutaecarpine as the lead compound to achieve the total synthesis and structural derivation. The antiphytoviral activities of these compounds were systematically studied using tobacco mosaic virus (TMV) as the tested strain, and the structure-activity relationships were summarized. RESULT The anti TMV activities of compounds 5a, 5n, 6b, and 7c are significantly higher than that of commercial antiviral agent ningnanmycin. We chose 5n for further antiviral mechanism research, and the results showed that it can directly act on viral particles. The molecular docking results further confirmed the interaction of compound 5n and coat protein (CP). These compounds also exhibited broad-spectrum fungicidal activities against eight plant pathogens. Especially compounds 5j and 5p have significant anti-fungal activities (EC50: 5j, 1.76 μg mL-1; 5p, 1.59 μg mL-1) and can be further studied as leads for plant-based anti-fungal agents. CONCLUSION The natural product rutaecarpine and its derivatives were synthesized, and evaluated for their anti-TMV and fungicidal activities. Compounds 5n and 5p with good activities emerged as new antiviral and anti-fungal candidates, respectively. This study provides important information for the research and development of the novel antiviral and fungicidal agents based on rutaecarpine derivatives. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Miao-Miao Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Xin Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Tai-Qing Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Xing-Xing He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, China
| | - De-Ya Wen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Xing-Chen Hang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, China
| | - Ai-Dang Lu
- School of Chemical Engineering and Technology, Hebei University of Technology, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin, China
| | - Zheng-Hong Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
| | - Qing-Min Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
| | - Zi-Wen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, China
| |
Collapse
|
2
|
Kambalyal AM, Bhandurge P, Gawas N, Koli R, Gudasi S, Shetty P, Maste M, Gaikwad K. Development of marker-based quantification methods fo r Diospyros Montana Roxb using DoE approach and in-silico anti-diabetic screening of selected phytoconstituents of the Diospyros genus. Nat Prod Res 2024:1-9. [PMID: 39724091 DOI: 10.1080/14786419.2024.2445205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Diabetes mellitus is a rising global health issue, necessitating effective and affordable treatments. This study aimed to develop marker-based quantification methods for Diospyros montana Roxb using a DoE approach and conduct in-silico anti-diabetic screening of its phytoconstituents. Methanolic extracts of the plant underwent fractionation, with the chloroform fraction used for simultaneous HPLC quantification of Plumbagin and Juglone. The in-vitro anti-diabetic effects were evaluated through alpha-amylase and alpha-glucosidase inhibition assays. Cytoscape 3.7.2 was used to construct networks linking phytoconstituents to Type-2 diabetes targets and pathways, while docking studies involved proteins 1SO2, 3H1V, and 5DXU. A validated HPLC method quantified Plumbagin (Rt: 4.618) and Juglone (Rt: 3.998). The chloroform fraction showed significant enzyme inhibition with IC50 values of 36.775 and 33.124. Gene network analysis highlighted 8-hydroxyisodiospyrin, and docking revealed Astragalin's strong binding to 3H1V (score: -10.537). This study underscores Diospyros montana Roxb potential in diabetes management, warranting further research.
Collapse
Affiliation(s)
- Ashwini M Kambalyal
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, KLE Academy of Higher Education and Research, JNMC Campus, Belagavi, Karnataka, India
| | - Parixit Bhandurge
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, KLE Academy of Higher Education and Research, JNMC Campus, Belagavi, Karnataka, India
| | - Nikhil Gawas
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, KLE Academy of Higher Education and Research, JNMC Campus, Belagavi, Karnataka, India
| | - Rahul Koli
- Department of Pharmaceutical Quality Assurance, KLE College of Pharmacy, KLE Academy of Higher Education and Research, JNMC Campus, Belagavi, Karnataka, India
| | - Sachin Gudasi
- Department of Pharmacognosy, KLE College of Pharmacy, KLE Academy of Higher Education and Research, JNMC Campus, Belagavi, Karnataka, India
| | - Priya Shetty
- Research Associate, Analytical Department, Prabhakar Kore Basic Science and Research Center, KLE Academy of Higher Education and Research, JNMC Campus, Belagavi, Karnataka, India
| | - Meenaxi Maste
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, KLE Academy of Higher Education and Research, JNMC Campus, Belagavi, Karnataka, India
| | - Kiran Gaikwad
- Department of Pharmaceutical Chemistry, KLE College of Pharmacy, KLE Academy of Higher Education and Research, JNMC Campus, Belagavi, Karnataka, India
| |
Collapse
|
3
|
Huang W, Wan Y, Su H, Zhang Z, Liu Y, Sadeeq M, Xian M, Feng X, Xiong P, Hou F. Recent Advances in Phenazine Natural Products: Biosynthesis and Metabolic Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21364-21379. [PMID: 39300971 DOI: 10.1021/acs.jafc.4c05294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Phenazine natural products are a class of nitrogen-containing heterocyclic compounds produced by microorganisms. The tricyclic ring molecules show various chemical structures and extensive pharmacological activities, such as antimicrobial, anticancer, antiparasitic, anti-inflammatory, and insecticidal activities, with low toxicity to the environment. Since phenazine-1-carboxylic acid has been developed as a registered biopesticide, the application of phenazine natural products will be promising in the field of agriculture pathogenic fungi control based on broad-spectrum antifungal activity, minimal toxicity to the environment, and improvement of crop production. Currently, there are still plenty of intriguing hidden biosynthetic pathways of phenazine natural products to be discovered, and the titer of naturally occurring phenazine natural products is insufficient for agricultural applications. In this review, we spotlight the progress regarding biosynthesis and metabolic engineering research of phenazine natural products in the past decade. The review provides useful insights concerning phenazine natural products production and more clues on new phenazine derivatives biosynthesis.
Collapse
Affiliation(s)
- Wei Huang
- Shandong Freda Biotech Co., Ltd, 250101 Jinan, China
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Yupeng Wan
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Huai Su
- Shandong Freda Biotech Co., Ltd, 250101 Jinan, China
| | - Zhe Zhang
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Yingjie Liu
- Shandong Freda Biotech Co., Ltd, 250101 Jinan, China
| | - Mohd Sadeeq
- Shandong University of Technology, School of Life Sciences and Medicine, 255000 Zibo, China
| | - Mo Xian
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Xinjun Feng
- CAS Key Lab of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China
| | - Peng Xiong
- Shandong University of Technology, School of Life Sciences and Medicine, 255000 Zibo, China
| | - Feifei Hou
- Shandong University of Technology, School of Life Sciences and Medicine, 255000 Zibo, China
| |
Collapse
|
4
|
Cong F, Gu L, Lin J, Liu G, Wang Q, Zhang L, Chi M, Xu Q, Zhao G, Li C. Plumbagin inhibits fungal growth, HMGB1/LOX-1 pathway and inflammatory factors in A. fumigatus keratitis. Front Microbiol 2024; 15:1383509. [PMID: 38655086 PMCID: PMC11035880 DOI: 10.3389/fmicb.2024.1383509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
To investigate the anti-inflammatory and antifungal effects of plumbagin (PL) in Aspergillus fumigatus (A. fumigatus) keratitis, the minimum inhibitory concentration (MIC), time-killing curve, spore adhesion, crystal violet staining, calcium fluoride white staining, and Propidium Iodide (PI) staining were employed to assess the antifungal activity of PL in vitro against A. fumigatus. The cytotoxicity of PL was assessed using the Cell Counting Kit-8 (CCK8). The impact of PL on the expression of HMGB1, LOX-1, TNF-α, IL-1β, IL-6, IL-10 and ROS in A. fumigatus keratitis was investigated using RT-PCR, ELISA, Western blot, and Reactive oxygen species (ROS) assay. The therapeutic efficacy of PL against A. fumigatus keratitis was assessed through clinical scoring, plate counting, Immunofluorescence and Hematoxylin-Eosin (HE) staining. Finally, we found that PL inhibited the growth, spore adhesion, and biofilm formation of A. fumigatus and disrupted the integrity of its cell membrane and cell wall. PL decreased IL-6, TNF-α, and IL-1β levels while increasing IL-10 expression in fungi-infected mice corneas and peritoneal macrophages. Additionally, PL significantly attenuated the HMGB1/LOX-1 pathway while reversing the promoting effect of Boxb (an HMGB1 agonist) on HMGB1/LOX-1. Moreover, PL decreased the level of ROS. In vivo, clinical scores, neutrophil recruitment, and fungal burden were all significantly reduced in infected corneas treated with PL. In summary, the inflammatory process can be inhibited by PL through the regulation of the HMGB-1/LOX-1 pathway. Simultaneously, PL can exert antifungal effects by limiting fungal spore adhesion and biofilm formation, as well as causing destruction of cell membranes and walls.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
5
|
Ma H, Wang K, Wang B, Wang Z, Liu Y, Wang Q. Design, Synthesis, and Biological Activities of Novel Coumarin Derivatives as Pesticide Candidates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4658-4668. [PMID: 38388372 DOI: 10.1021/acs.jafc.3c08161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Food security is an important issue in the 21st century; preventing and controlling crop diseases and pests are the key to solve this problem. The creation of new pesticides based on natural products is an important and effective method. Herein, coumarins were selected as parent structures, and a series of their derivatives were designed, synthesized, and evaluated for their antiviral activities, fungicidal activities, and insecticidal activities. We found that coumarin derivatives exhibited good to excellent antiviral activities against tobacco mosaic virus (TMV). The antiviral activities of I-1, I-2a, I-4b, II-2c, II-2g, II-3, and II-3b are better than that of ribavirin at 500 μg/mL. Molecular docking research showed that these compounds had a strong interaction with TMV CP. These compounds also showed broad-spectrum fungicidal activities against 14 plant pathogenic fungi. The EC50 values of I-1, I-2a, I-3c, and II-2d are in the range of 1.56-8.65 μg/mL against Rhizoctonia cerealis, Physalospora piricola, Sclerotinia sclerotiorum, and Pyricularia grisea. Most of the compounds also displayed good insecticidal activities against Mythimna separata. Pesticide-likeness analysis showed that these compounds are following pesticide-likeness and have the potential to be developed as pesticide candidates. The present work lays a foundation for the discovery of novel pesticide lead compounds based on coumarin derivatives.
Collapse
Affiliation(s)
- Henan Ma
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Kaihua Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Beibei Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Ziwen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Zhang Y, Zeng H, Zhou L, Wang C, Yang X, Liu S. Integrated histopathology and transcriptome metabolome profiling reveal the toxicity mechanism of phenazine-1-carboxylic acid in zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123402. [PMID: 38272164 DOI: 10.1016/j.envpol.2024.123402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/03/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Phenazine-1-carboxylic acid (PCA) is a new type of agrochemical used to prevent plant diseases, but its effects on aquatic organisms are unclear. To comprehensively assess the impacts of PCA for aquatic organisms and its associated environmental risks, this study investigated, taking zebrafish as the research object, the toxicological mechanism of PCA by means of optical microscopy, hematoxylin and eosin (HE) staining, ultrastructural observation, physiological and biochemical testing, transcriptome sequencing, metabolome analysis, fluorescence quantitative PCR and molecular simulation. The results indicated that PCA was detrimental to zebrafish embryos, larvae and adults, with LC50 values at 96 h of 3.9093 mg/L, 8.5075 mg/L, and 13.6388 mg/L, respectively. PCA caused abnormal spontaneous movement, slowed the heart rate, delayed hatching, shortened the body length, slowed growth, and caused malformations. PCA mainly affected the brain, liver, heart, and ovaries. PCA distorted cell morphology, damaged mitochondrial membranes, disintegrated mitochondrial ridges, and dissociated nuclear membranes. PCA inhibited the enzyme activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX), decreased the malondialdehyde (MDA) content and disrupted antioxidant effects. The results of omics studies confirmed that PCA interfered with the transcriptional and metabolic network of zebrafish, downregulating most genes and metabolites. PCA mainly affected functions related to mitochondrial steroids, lipids, sterols, oxidoreductase activity and pathways involving cofactors, steroids, porphyrin, cytochromes, which specifically bound to targets such as panx3, agmat, and ace2. PCA was moderately toxic to zebrafish, and its usage should be strictly controlled to reduce toxic effects on aquatic organisms. The results of this study provide a new insights for ecotoxicology research.
Collapse
Affiliation(s)
- Ya Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Hao Zeng
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Leyin Zhou
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xiao Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuangqing Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
7
|
Luo SH, Hua J, Liu Y, Li SH. The Chemical Ecology of Plant Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 124:57-183. [PMID: 39101984 DOI: 10.1007/978-3-031-59567-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Plants are excellent chemists with an impressive capability of biosynthesizing a large variety of natural products (also known as secondary or specialized metabolites) to resist various biotic and abiotic stresses. In this chapter, 989 plant natural products and their ecological functions in plant-herbivore, plant-microorganism, and plant-plant interactions are reviewed. These compounds include terpenoids, phenols, alkaloids, and other structural types. Terpenoids usually provide direct or indirect defense functions for plants, while phenolic compounds play important roles in regulating the interactions between plants and other organisms. Alkaloids are frequently toxic to herbivores and microorganisms, and can therefore also provide defense functions. The information presented should provide the basis for in-depth research of these plant natural products and their natural functions, and also for their further development and utilization.
Collapse
Affiliation(s)
- Shi-Hong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China
| | - Juan Hua
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Dongling Road 120, Shenhe District, Shenyang, 110866, Liaoning Province, P. R. China
| | - Yan Liu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, LiuTai Avenue 1166, Wenjiang District, Chengdu, 611137, Sichuan Province, P. R. China.
| | - Sheng-Hong Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Panlong District, Kunming, 650201, Yunnan Province, P. R. China.
| |
Collapse
|