1
|
Zhang R, Li Y, Guan F, Fu G, Liu P, Bai X, Yang Y, Sun C, Zhang T. A homogalacturonan-rich pectic polysaccharide isolated from Lonicera japonica Thunb. modulates galectin-4-mediated bioactivity and anti-hepatocellular carcinoma activity. Int J Biol Macromol 2025; 302:140618. [PMID: 39900157 DOI: 10.1016/j.ijbiomac.2025.140618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/05/2025]
Abstract
L. japonica is a traditional Chinese medicine with dual-use properties. Herein, a HG-rich pectic polysaccharide, WLJP-03A, was purified from the dried flowers of L. japonica, which composed of Rha (5 %), GalA (60 %), Gal (5 %), and Ara (30 %), with a molecular weight of 28.1 kDa. WLJP-03A could be defined as an HG backbone with α-(1 → 3,5)-linked and α-(1 → 5)-linked arabinan, β-(1 → 3,6)-linked and β-(1 → 3)-linked galactan, and type II arabinogalactan side chains. Its interaction with two truncated structural domain proteins of galectin-4 (Gal-4) revealed stronger binding of WLJP-03A to Gal-4C (MIC = 15 μg/mL) than to Gal-4N (MIC = 62 μg/mL), indicating that WLJP-03A mainly interacted with the C-terminal CRD to inhibit the biological activity of Gal-4. Furthermore, in vitro antitumor assays showed that WLJP-03A could inhibit the cellular proliferation and migration of HCCLM3 cells induced by Gal-4. These results provide new insights into the structure-activity relationship between L. japonica polysaccharide and Gal-4.
Collapse
Affiliation(s)
- Renqun Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Yiqing Li
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; Department of Laboratory Medicine, The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Fanqi Guan
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Guixia Fu
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Ping Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Xinyu Bai
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Yan Yang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China
| | - Chengxin Sun
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Tao Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China; School of Laboratory Medicine, Zunyi Medical University, Zunyi 563006, China.
| |
Collapse
|
2
|
Ohkawa M, Kamata K, Kawsar SM, Gerdol M, Fujii Y, Ozeki Y. Characterization of HOL-30: a novel tandem-repeat galectin from the marine sponge Halichondria okadai. BBA ADVANCES 2025; 7:100153. [PMID: 40207211 PMCID: PMC11979922 DOI: 10.1016/j.bbadva.2025.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/22/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
We here report the novel primary structure of a new member in the galectin family, the β-galactoside-binding lectin HOL-30, from the marine sponge Halichondria okadai, whose full-length sequence was determined thanks to the combination between Edman degradation and transcriptome analysis. The HOL-30 polypeptide is a tandem-repeat dimeric galectin, consisting of 281 amino acids, which includes two carbohydrate recognition domains (CRDs). Unlike most other galectins described in Porifera, HOL-30 did not have a signal peptide sequence for secretion. In solution, HOL-30 exhibited a molecular weight of 60 kDa, indicating a dimeric organization consisting of two 30 kDa tandem-repeat subunits stabilized by non-covalent interactions. Although the two CRDs had a similar predicted 3D structure, they displayed low pairwise sequence identity, approximately 20 %. HOL-30 exhibited glycan-binding affinities for type-1 (Galβ1-3GlcNAc) and type-2 (Galβ1-4GlcNAc) LacNAc. Furthermore, it also recognized blood type B-oligosaccharides on type-1 and type-2 LacNAc (Galα1-3Gal[Fucα1-2]β1-3/4GlcNAc), and blood type H-oligosaccharide on type-3 (Gal[Fucα1-2]β1-3GalNAcα). The glycan-binding properties of HOL-30 were compared with those of the hRTL galectin, previously identified in Chondrilla australiensis, consisting of tetrameric 15 kDa prototype subunits. The two sponge galectins displayed similar, but not identical, carbohydrate-binding properties, as evidenced by the fact that despite effectively binding to vertebrate cultured cells, HOL-30 had minimal impact on cell growth. Antiserum analysis revealed a mosaic distribution of HOL-30 in the parenchymal cells of sponge tissues within dense cell clusters surrounding the spicules.
Collapse
Affiliation(s)
- Mayuka Ohkawa
- Graduate School of NanoBiosciences, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kenichi Kamata
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro, Tsurumi-Ku, Yokohama 230-0045 Japan
| | - Sarkar M.A. Kawsar
- Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331 Bangladesh
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5 34127 Trieste, Italy
| | - Yuki Fujii
- Graduate School of Pharmaceutical Sciences, Nagasaki International University, 2825-7, Huis Tem Bosch, Sasebo 859-3298 Nagasaki, Japan
| | - Yasuhiro Ozeki
- Graduate School of NanoBiosciences, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| |
Collapse
|
3
|
Dey C, Sommerfeld IK, Bojarová P, Kodra N, Vrbata D, Zimolová Vlachová M, Křen V, Pich A, Elling L. Color-coded galectin fusion proteins as novel tools in biomaterial science. Biomater Sci 2025; 13:1482-1500. [PMID: 39907577 DOI: 10.1039/d4bm01148a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
The inherent carbohydrate-binding specificities of human galectins can serve as recognition elements in both biotechnological and biomedical applications. The combination of the carbohydrate-recognition domain (CRD) of galectins fused to peptides or proteins for purification, immobilization, and imaging enables multifunctional utilization within a single protein. We present here a library of color-coded galectin fusion proteins that incorporate a His6-tag, a fluorescent protein, and a SpyCatcher or SpyTag unit to enable immobilization procedures. These galectin fusion proteins exhibit similar binding properties to the non-fused galectins with micromolar apparent binding affinities. N- and C-terminal fusion partners do not interfere with the SpyCatcher/SpyTag immobilization. By applying SpyCatcher/SpyTag-mediated SC-ST-Gal-3 conjugates, we show the stepwise formation of a three-layer ECM-like structure in vitro. Additionally, we demonstrate the SpyCatcher/SpyTag-mediated immobilization of galectins in microgels, which can serve as a transport platform for localized targeting applications. The proof of concept is provided by the galectin-mediated binding of microgels to colorectal cancer cells.
Collapse
Affiliation(s)
- Carina Dey
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| | - Isabel K Sommerfeld
- DWI - Leibniz-Institute for Interactive Materials, e.V. Forckenbeckstr. 50, 52074 Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14200, Czech Republic
- Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, 27201 Kladno, Czech Republic
| | - Nikol Kodra
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| | - David Vrbata
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14200, Czech Republic
| | - Miluše Zimolová Vlachová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14200, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, Prague 4, 14200, Czech Republic
| | - Andrij Pich
- DWI - Leibniz-Institute for Interactive Materials, e.V. Forckenbeckstr. 50, 52074 Aachen, Germany
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| |
Collapse
|
4
|
Tsuchida A, Hachisu K, Mizuno M, Takada Y, Ideo H. High expression of B3GALT5 suppresses the galectin-4-mediated peritoneal dissemination of poorly differentiated gastric cancer cells. Glycobiology 2024; 34:cwae064. [PMID: 39163480 DOI: 10.1093/glycob/cwae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Peritoneal metastasis frequently accompanies metastatic and/or recurrent gastric cancer, leading to a poor prognosis owing to a lack of effective treatment. Hence, there is a pressing need to enhance our understanding of the mechanisms and molecules driving peritoneal metastasis. In a previous study, galectin-4 inhibition impeded peritoneal metastasis in a murine model. This study examined the glycan profiles of cell surface proteins and glycosphingolipids (GSLs) in cells with varying tumorigenic potentials to understand the intricate mechanisms underlying galectin-4-mediated regulation, particularly glycosylation. Detailed mass spectrometry analysis showed that galectin-4 knockout cells exhibit increased expression of lacto-series GSLs with β1,3-linked galactose while showing no significant alterations in neolacto-series GSLs. We conducted real-time polymerase chain reaction (PCR) analysis to identify candidate glycosyltransferases that synthesize increased levels of GSLs. Subsequently, we introduced the candidate B3GALT5 gene and selected the clones with high expression levels. B3GALT5 gene-expressing clones showed GSL glycan profiles like those of knockout cells and significantly reduced tumorigenic ability in mouse models. These clones exhibited diminished proliferative capacity and showed reduced expression of galectin-4 and activated AKT. Moreover, co-localization of galectin-4 with flotillin-2 (a raft marker) decreased in B3GALT5-expressing cells, implicating GSLs in galectin-4 localization to lipid rafts. D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (a GSL synthase inhibitor) also affected galectin-4 localization in rafts, suggesting the involvement of GSL microdomains. We discovered that B3GALT5 plays a crucial role in regulating peritoneal metastasis of malignant gastric cancer cells by suppressing cell proliferation and modulating lipid rafts and galectin-4 via mechanisms that are yet to be elucidated.
Collapse
Affiliation(s)
- Akiko Tsuchida
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Kazuko Hachisu
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Mamoru Mizuno
- Laboratory of Glyco-organic Chemistry, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Yoshio Takada
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| | - Hiroko Ideo
- Laboratory of Glycobiology, The Noguchi Institute, 1-9-7, Kaga, Itabashi, Tokyo 173-0003, Japan
| |
Collapse
|
5
|
Quintana JI, Massaro M, Cagnoni AJ, Nuñez-Franco R, Delgado S, Jiménez-Osés G, Mariño KV, Rabinovich GA, Jiménez-Barbero J, Ardá A. Different roles of the heterodimer architecture of galectin-4 in selective recognition of oligosaccharides and lipopolysaccharides having ABH antigens. J Biol Chem 2024; 300:107577. [PMID: 39019214 PMCID: PMC11362799 DOI: 10.1016/j.jbc.2024.107577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024] Open
Abstract
The dimeric architecture of tandem-repeat type galectins, such as galectin-4 (Gal-4), modulates their biological activities, although the underlying molecular mechanisms have remained elusive. Emerging evidence show that tandem-repeat galectins play an important role in innate immunity by recognizing carbohydrate antigens present on the surface of certain pathogens, which very often mimic the structures of the human self-glycan antigens. Herein, we have analyzed the binding preferences of the C-domain of Gal-4 (Gal-4C) toward the ABH-carbohydrate histo-blood antigens with different core presentations and their recognition features have been rationalized by using a combined experimental approach including NMR, solid-phase and hemagglutination assays, and molecular modeling. The data show that Gal-4C prefers A over B antigens (two-fold in affinity), contrary to the N-domain (Gal-4N), although both domains share the same preference for the type-6 presentations. The behavior of the full-length Gal-4 (Gal-4FL) tandem-repeat form has been additionally scrutinized. Isothermal titration calorimetry and NMR data demonstrate that both domains within full-length Gal-4 bind to the histo-blood antigens independently of each other, with no communication between them. In this context, the heterodimeric architecture does not play any major role, apart from the complementary A and B antigen binding preferences. However, upon binding to a bacterial lipopolysaccharide containing a multivalent version of an H-antigen mimetic as O-antigen, the significance of the galectin architecture was revealed. Indeed, our data point to the linker peptide domain and the F-face of the C-domain as key elements that provide Gal-4 with the ability to cross-link multivalent ligands, beyond the glycan binding capacity of the dimer.
Collapse
Affiliation(s)
- Jon I Quintana
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Mora Massaro
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandro J Cagnoni
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Sandra Delgado
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain
| | - Karina V Mariño
- Laboratorio de Glicómica Funcional y Molecular, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain; Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country, Leioa, Spain; Centro de investigación Biomédica En Red de Enfermedades Respiratorias, Madrid, Spain.
| | - Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia, Spain.
| |
Collapse
|
6
|
Sommerfeld IK, Palm P, Hussnaetter KP, Pieper MI, Bulut S, Lile T, Wagner R, Walkowiak JJ, Elling L, Pich A. Microgels with Immobilized Glycosyltransferases for Enzymatic Glycan Synthesis. Biomacromolecules 2024; 25:3807-3822. [PMID: 38807305 DOI: 10.1021/acs.biomac.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Glycans, composed of linked monosaccharides, play crucial roles in biology and find diverse applications. Enhancing their enzymatic synthesis can be achieved by immobilizing enzymes on materials such as microgels. Here, we present microgels with immobilized glycosyltransferases, synthesized through droplet microfluidics, immobilizing enzymes either via encapsulation or postattachment. SpyTag-SpyCatcher interaction was used for enzyme binding, among others. Fluorescamine and permeability assays confirmed enzyme immobilization and microgel porosity, while enzymatic activities were determined using HPLC. The potential application of microgels in cascade reactions involving multiple enzymes was demonstrated by combining β4GalT and α3GalT in an enzymatic reaction with high yields. Moreover, a cascade of β4GalT and β3GlcNAcT was successfully implemented. These results pave the way toward a modular membrane bioreactor for automated glycan synthesis containing the presented biocatalytic microgels.
Collapse
Affiliation(s)
- Isabel Katja Sommerfeld
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Philip Palm
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Kai Philip Hussnaetter
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Maria Isabell Pieper
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Selin Bulut
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Tudor Lile
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Rebekka Wagner
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Jacek Janusz Walkowiak
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen 6167, The Netherlands
| | - Lothar Elling
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen 6167, The Netherlands
| |
Collapse
|
7
|
Vrbata D, Červený J, Kulik N, Hovorková M, Balogová S, Vlachová M, Pelantová H, Křen V, Bojarová P. Glycomimetic inhibitors of tandem-repeat galectins: Simple and efficient. Bioorg Chem 2024; 145:107231. [PMID: 38394919 DOI: 10.1016/j.bioorg.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
The binding of human galectins by glycomimetic inhibitors is a promising therapeutic approach. The structurally distinct group of tandem-repeat galectins has scarcely been studied so far, and there is hardly any knowledge on their ligand specificity or their inhibitory potential, particularly concerning non-natural carbohydrates. Here, we present the synthesis of a library of seven 3-O-disubstituted thiodigalactoside-derived glycomimetics and their affinity to two tandem-repeat galectins, Gal-8 and Gal-9. The straightforward synthesis of these glycomimetics involved dibutyltin oxide-catalyzed 3,3́-O-disubstitution of commercially available unprotected thiodigalactoside, and conjugation of various aryl substituents by copper-catalyzed Huisgen azide-alkyne cycloaddition (CuAAC). The inhibitory potential of the prepared glycomimetics for Gal-8 and Gal-9 was assessed, and compared with the established galectins Gal-1 and Gal-3. The introduction of C-3 substituents resulted in an over 40-fold increase in affinity compared with unmodified TDG. The structure-affinity relations within the studied series were discussed using molecular modeling. Furthermore, the prepared glycomimetics were shown to scavenge Gal-8 and Gal-9 from the surface of cancer cells. This pioneering study on the synthetic inhibitors especially of Gal-9 identified lead compounds that may be used in further biomedical research.
Collapse
Affiliation(s)
- David Vrbata
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague 4, Czech Republic
| | - Jakub Červený
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague 4, Czech Republic; Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-128 43 Prague 2, Czech Republic
| | - Natalia Kulik
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague 4, Czech Republic
| | - Michaela Hovorková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-128 43 Prague 2, Czech Republic
| | - Soňa Balogová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague 4, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, CZ-128 43 Prague 2, Czech Republic
| | - Miluše Vlachová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague 4, Czech Republic
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague 4, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 00, Prague 4, Czech Republic; Department of Health Care Disciplines and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, nám. Sítná 3105, CZ-272 01 Kladno, Czech Republic.
| |
Collapse
|