1
|
Sobral MC, Mota SI, Oliveira PJ, Urbano AM, Paulo A. Two Targets, One Mission: Heterobivalent Metal-Based Radiopharmaceuticals for Prostate Cancer Imaging and Therapy. ChemMedChem 2025:e2500128. [PMID: 40117450 DOI: 10.1002/cmdc.202500128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/23/2025]
Abstract
Prostate cancer (PCa) is a significant healthcare challenge, associated with considerable mortality and morbidity among men, particularly in developed countries. PCa mortality and morbidity are primarily related to its most advanced form, metastatic castration-resistant PCa (mCRPC), for which there is presently no cure. Therefore, novel therapeutic approaches to increase mCRPC survival are critically needed. Due to PCa tumor heterogeneity and a complex tumor microenvironment, the efficacy of single-target radiopharmaceuticals, such as the Food and Drug Administration-approved [177Lu]Lu-PSMA-617, is currently under reassessment. The design and development of PCa dual-target radiopharmaceuticals have garnered considerable attention, due to their benefits over single-target counterparts, namely increased therapeutic specificity and efficacy, as well as the ability to overcome the challenge of inconsistent tumor visualization caused by variable receptor expression across diverse lesions, thereby enabling more comprehensive imaging. Several PCa biomarkers are currently being investigated as potential targets for dual-target radiopharmaceuticals, including prostate-specific membrane antigen, gastrin-releasing peptide receptor, integrin αvβ3 receptor, fibroblast activation protein, sigma-1 receptor, as well as albumin, the radiosensitive cell nucleus, and mitochondria. This review explores recent advancements in heterobivalent metal-based radiopharmaceuticals for dual targeting in PCa, highlighting their significance in theranostic and personalized medicine.
Collapse
Affiliation(s)
- Margarida C Sobral
- Institute of Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548, Coimbra, Portugal
- Molecular Physical Chemistry R&D Unit, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Sandra I Mota
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197, Cantanhede, Portugal
- CIBB, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Ana M Urbano
- Molecular Physical Chemistry R&D Unit, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
- Center of Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, 3001-301, Coimbra, Portugal
| | - António Paulo
- C2TN -Center for Nuclear Sciences and Technologies, Instituto Superior Técnico, University of Lisboa, 2695-066, Lisboa, Portugal
- Department of Engineering and Nuclear Sciences, Instituto Superior Técnico, University of Lisboa, 2695-066, Lisboa, Portugal
| |
Collapse
|
2
|
Buyukgolcigezli I, Tenekeci AK, Sahin IH. Opportunities and Challenges in Antibody-Drug Conjugates for Cancer Therapy: A New Era for Cancer Treatment. Cancers (Basel) 2025; 17:958. [PMID: 40149295 PMCID: PMC11939980 DOI: 10.3390/cancers17060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
The antibody, linker, and payload moieties all play a significant role in giving the ADC its unique therapeutic potential. The antibody subclass employed in ADCs is determined based on relative individual receptor affinities and pharmacokinetics. Meanwhile, the linker used in an ADC can either be cleavable or non-cleavable. ADC therapy comprises antibody-dependent mechanisms in addition to the direct cytotoxic effects of the payload. These include antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, as well as the "bystander effect", which refers to the diffusion of a portion of the cytotoxic molecules out of the target cell, exerting its cytotoxic effect on the adjacent cells. Target antigens of ADCs are expected to be expressed on the membranes of the cancer cells facing the external matrix, although new approaches utilize antigens regarding tumor-associated cells, the tumor microenvironment, or the tumor vasculature. These target antigens of ADCs not only determine the efficacy of these agents but also impact the off-targets and related adverse effects. The majority of ADC-related toxicities are associated with off-targets. The proposed mechanisms of ADC resistance include disrupted intracellular drug trafficking, dysfunctional lysosomal processing, and the efflux of the cytotoxic molecule via ATP-binding cassette (ABC) transporters. The latter mechanism is especially prominent for multi-drug-resistant tumors. An important limitation of ADCs is the penetration of the conjugate into the tumor microenvironment and their delivery to target cancer cells. Cancerous tissues' vascular profile and the steric "binding site barrier" formed around the peripheral vessels of tumors stand as potential challenges of ADC therapy for solid tumors. As research efforts focus on reducing toxicities, overcoming resistance, and improving pharmacokinetics, ADC options for cancer therapy are expected to continue to diversify, including standalone approaches and combination therapies.
Collapse
Affiliation(s)
| | - Ates Kutay Tenekeci
- Department of Biochemistry, Faculty of Medicine, Hacettepe University, Ankara 06230, Turkey;
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ibrahim Halil Sahin
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Alshehri AM, Wilson OC. Biomimetic Hydrogel Strategies for Cancer Therapy. Gels 2024; 10:437. [PMID: 39057460 PMCID: PMC11275631 DOI: 10.3390/gels10070437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Recent developments in biomimetic hydrogel research have expanded the scope of biomedical technologies that can be used to model, diagnose, and treat a wide range of medical conditions. Cancer presents one of the most intractable challenges in this arena due to the surreptitious mechanisms that it employs to evade detection and treatment. In order to address these challenges, biomimetic design principles can be adapted to beat cancer at its own game. Biomimetic design strategies are inspired by natural biological systems and offer promising opportunities for developing life-changing methods to model, detect, diagnose, treat, and cure various types of static and metastatic cancers. In particular, focusing on the cellular and subcellular phenomena that serve as fundamental drivers for the peculiar behavioral traits of cancer can provide rich insights into eradicating cancer in all of its manifestations. This review highlights promising developments in biomimetic nanocomposite hydrogels that contribute to cancer therapies via enhanced drug delivery strategies and modeling cancer mechanobiology phenomena in relation to metastasis and synergistic sensing systems. Creative efforts to amplify biomimetic design research to advance the development of more effective cancer therapies will be discussed in alignment with international collaborative goals to cure cancer.
Collapse
Affiliation(s)
- Awatef M. Alshehri
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
- Department of Nanomedicine, King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdelaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia;
| | - Otto C. Wilson
- Department of Biomedical Engineering, The Catholic University of America, Washington, DC 20064, USA
| |
Collapse
|
4
|
Zhang T, Lei H, Chen X, Dou Z, Yu B, Su W, Wang W, Jin X, Katsube T, Wang B, Zhang H, Li Q, Di C. Carrier systems of radiopharmaceuticals and the application in cancer therapy. Cell Death Discov 2024; 10:16. [PMID: 38195680 PMCID: PMC10776600 DOI: 10.1038/s41420-023-01778-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024] Open
Abstract
Radiopharmaceuticals play a vital role in cancer therapy. The carrier of radiopharmaceuticals can precisely locate and guide radionuclides to the target, where radionuclides kill surrounding tumor cells. Effective application of radiopharmaceuticals depends on the selection of an appropriate carrier. Herein, different types of carriers of radiopharmaceuticals and the characteristics are briefly described. Subsequently, we review radiolabeled monoclonal antibodies (mAbs) and their derivatives, and novel strategies of radiolabeled mAbs and their derivatives in the treatment of lymphoma and colorectal cancer. Furthermore, this review outlines radiolabeled peptides, and novel strategies of radiolabeled peptides in the treatment of neuroendocrine neoplasms, prostate cancer, and gliomas. The emphasis is given to heterodimers, bicyclic peptides, and peptide-modified nanoparticles. Last, the latest developments and applications of radiolabeled nucleic acids and small molecules in cancer therapy are discussed. Thus, this review will contribute to a better understanding of the carrier of radiopharmaceuticals and the application in cancer therapy.
Collapse
Affiliation(s)
- Taotao Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Huiwen Lei
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
| | - Zhihui Dou
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Boyi Yu
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Wei Su
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Wei Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730000, China
| | - Xiaodong Jin
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China
| | - Takanori Katsube
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Bing Wang
- National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| | - Qiang Li
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, 730000, China.
- College of Life Sciences, University of Chinese Academy of Sciences, 101408, Beijing, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, 101408, Beijing, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516029, China.
| |
Collapse
|