1
|
Bai K, Long Y, Yuan F, Huang X, Liu P, Hou Y, Zou X, Jiang T, Sun J. Hedyotis diffusa injection modulates the ferroptosis in bladder cancer via CAV1/JUN/VEGFA. Int Immunopharmacol 2025; 147:113925. [PMID: 39765005 DOI: 10.1016/j.intimp.2024.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/26/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025]
Abstract
Hedyotis diffusa Willd. (HDW), a traditional Chinese medicinal plant, exhibits a variety of pharmacological effects and has anticancer potential for a wide range of cancer types; Ferroptosis is a non-apoptosis-regulated cell death induced by iron accumulation and subsequent lipid peroxidation; and there is currently an increasing interest in the therapeutic role of ferroptosis in cancer. However, the effects of HDW on bladder cancer and its underlying molecular mechanisms remain largely unknown. In this study, a combination of in vivo and in vitro experiments, network pharmacology and data mining methods were used to investigate the effects of HDW on BLCA. The results showed that HDW exerted its anticancer activity by inducing ferroptosis in bladder cancer cells. Subsequently, we demonstrated for the first time that HDW induced ferroptosis in vitro and in vivo. To further explore the possible targets of HDW-induced ferroptosis in bladder cancer, we performed network pharmacological analyses, transcriptomic analyses, and single-cell analyses; through integrative analyses, we identified three key pivotal genes associated with iron death, CAV1, VEGFA, and JUN.Mechanistically, we showed that CAV1, VEGFA and JUN are key determinants of HDW-induced ferroptosis in BLCA. Knockdown of target genes altered the anticancer effects of HDW in 5637 and T24 cells. In conclusion, our data show for the first time that HDW exerts its anticancer effects on BLCA through CAV1, VEGFA and JUN gene-induced ferroptosis. This is expected to provide a promising compound for bladder cancer therapy.
Collapse
Affiliation(s)
- Kaiping Bai
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Yanxi Long
- Department of Anesthesiology, International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Fei Yuan
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Xiaoling Huang
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Pengtao Liu
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Yanping Hou
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Xiangyu Zou
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| | - Tao Jiang
- Department of Andrology and Sexual Medicine, The Second Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning 116000, China.
| | - Jie Sun
- Department of Urology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Pudong New Area, Shanghai 200127, China.
| |
Collapse
|
2
|
Russo M, Martella N, Gargano D, Fantasma F, Marcovecchio C, Russo V, Oliva MA, Segatto M, Saviano G, Di Bartolomeo S, Arcella A. Lavender Essential Oil and Its Terpenic Components Negatively Affect Tumor Properties in a Cell Model of Glioblastoma. Molecules 2024; 29:6044. [PMID: 39770132 PMCID: PMC11676467 DOI: 10.3390/molecules29246044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive form of brain cancer in adults, characterized by extensive growth, a high recurrence rate, and resistance to treatment. Growing research interest is focusing on the biological roles of natural compounds due to their potential beneficial effects on health. Our research aimed to investigate the effects of lavender essential oil (LEO) on a GBM cell model. Chemical characterization using GC-MS analysis indicated that LEO contains several terpenes, compounds that have been found to exhibit anticancer properties by interfering with key cancer-related pathways in several cancer models. By means of cell biology assays, we demonstrated that LEO impairs cell proliferation and migration, and also reduces oxidative stress in U87 cells. We further observed that Terpinen-4-ol, contained in LEO, was capable of reproducing the effects of the oil on GBM cells. Our results suggest that the terpenic molecules present in LEO could be considered valuable allies alongside conventional therapies against GBM.
Collapse
Affiliation(s)
- Miriam Russo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (M.R.); (N.M.); (D.G.); (F.F.); (C.M.); (M.S.)
| | - Noemi Martella
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (M.R.); (N.M.); (D.G.); (F.F.); (C.M.); (M.S.)
| | - Deborah Gargano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (M.R.); (N.M.); (D.G.); (F.F.); (C.M.); (M.S.)
| | - Francesca Fantasma
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (M.R.); (N.M.); (D.G.); (F.F.); (C.M.); (M.S.)
| | - Chiara Marcovecchio
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (M.R.); (N.M.); (D.G.); (F.F.); (C.M.); (M.S.)
| | - Veronica Russo
- IRCCS Istituto Neurologico Mediterraneo NEUROMED, Via Atinense 18, 86077 Pozzilli, Italy; (V.R.); (M.A.O.); (A.A.)
| | - Maria Antonietta Oliva
- IRCCS Istituto Neurologico Mediterraneo NEUROMED, Via Atinense 18, 86077 Pozzilli, Italy; (V.R.); (M.A.O.); (A.A.)
| | - Marco Segatto
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (M.R.); (N.M.); (D.G.); (F.F.); (C.M.); (M.S.)
| | - Gabriella Saviano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (M.R.); (N.M.); (D.G.); (F.F.); (C.M.); (M.S.)
| | - Sabrina Di Bartolomeo
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (M.R.); (N.M.); (D.G.); (F.F.); (C.M.); (M.S.)
| | - Antonietta Arcella
- IRCCS Istituto Neurologico Mediterraneo NEUROMED, Via Atinense 18, 86077 Pozzilli, Italy; (V.R.); (M.A.O.); (A.A.)
| |
Collapse
|
3
|
Zhang ZY, Lv XY, Zhou XP, Xiang HT, He YS, Li XY, Yan TT, Zhong YY, Li Z, Zhang BS. The mechanism of quercetin in treating intracerebral hemorrhage was investigated by network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e40010. [PMID: 39465696 PMCID: PMC11460913 DOI: 10.1097/md.0000000000040010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND The aim of this study was to explore the molecular mechanism of quercetin in the treatment of intracerebral hemorrhage. METHODS Quercetin target genes and intracerebral hemorrhage target genes were collected from 5 databases. After standardized conversion of the obtained target genes through uniprot database, cross genes of the 2 were obtained using Venny 2.1 online tool. Further, protein interaction relationships were obtained in the String database, and then core target genes were screened and visualized by Cytoscape software, and cross genes were enriched by GO and KEGG pathways. Finally, the active drug ingredients and target proteins were verified and visualized by computer. RESULTS In this study, 197 quercetin targets were identified as potential targets for the treatment of intracerebral hemorrhage, and 7 core target genes (TP53, STAT3, AKT1, SRC, JUN, TNF, and IL6) were screened. The GO and KEGG analyses further shed light on the molecular mechanisms underlying quercetin's treatment of intracerebral hemorrhage, involving multiple biological processes and signaling pathways (such as cancer pathways, lipids, and atherosclerosis). The stable binding of quercetin to these 7 key targets was confirmed by molecular docking simulation. CONCLUSION Quercetin may treat intracerebral hemorrhage through multi-target-multi-pathway mechanisms, including regulating apoptosis, inhibiting inflammatory response, inhibiting iron death, and regulating angiogenesis, which can help alleviate nerve damage caused by intracerebral hemorrhage.
Collapse
Affiliation(s)
- Zi-You Zhang
- College of Basic Medicine, Dali University, Dali, China
- Clinical College, Dehong Vocational College, Dehong Prefecture, Yunnan Province, China
| | - Xiao-Yu Lv
- College of Basic Medicine, Dali University, Dali, China
| | - Xin-Pei Zhou
- College of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Hai-Tao Xiang
- College of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Yu-Song He
- College of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Xu-Yang Li
- College of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Ting-Ting Yan
- College of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Yang-Yang Zhong
- College of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Zhuang Li
- College of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Ben-Si Zhang
- College of Basic Medicine, Dali University, Dali, China
| |
Collapse
|
4
|
Yeon Kim S, Tang M, Lu T, Chih SY, Li W. Ferroptosis in glioma therapy: advancements in sensitizing strategies and the complex tumor-promoting roles. Brain Res 2024; 1840:149045. [PMID: 38821335 PMCID: PMC11323215 DOI: 10.1016/j.brainres.2024.149045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Ferroptosis, an iron-dependent form of non-apoptotic regulated cell death, is induced by the accumulation of lipid peroxides on cellular membranes. Over the past decade, ferroptosis has emerged as a crucial process implicated in various physiological and pathological systems. Positioned as an alternative modality of cell death, ferroptosis holds promise for eliminating cancer cells that have developed resistance to apoptosis induced by conventional therapeutics. This has led to a growing interest in leveraging ferroptosis for cancer therapy across diverse malignancies. Gliomas are tumors arising from glial or precursor cells, with glioblastoma (GBM) being the most common malignant primary brain tumor that is associated with a dismal prognosis. This review provides a summary of recent advancements in the exploration of ferroptosis-sensitizing methods, with a specific focus on their potential application in enhancing the treatment of gliomas. In addition to summarizing the therapeutic potential, this review also discusses the intricate interplay of ferroptosis and its potential tumor-promoting roles within gliomas. Recognizing these dual roles is essential, as they could potentially complicate the therapeutic benefits of ferroptosis. Exploring strategies aimed at circumventing these tumor-promoting roles could enhance the overall therapeutic efficacy of ferroptosis in the context of glioma treatment.
Collapse
Affiliation(s)
- Soo Yeon Kim
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Miaolu Tang
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Tong Lu
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA
| | - Stephen Y Chih
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA; Medical Scientist Training Program, Penn State College of Medicine, Hershey, PA, USA
| | - Wei Li
- Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA; Penn State Cancer Institute, Penn State College of Medicine, Hershey, PA, USA; Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
5
|
Prerna, Chadha J, Khullar L, Mudgil U, Harjai K. A comprehensive review on the pharmacological prospects of Terpinen-4-ol: From nature to medicine and beyond. Fitoterapia 2024; 176:106051. [PMID: 38838826 DOI: 10.1016/j.fitote.2024.106051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Owing to their extensive biological potential, essential oils (EOs) and their bioactive phytochemicals have gained attention from the scientific community. Within this domain, Terpinen-4-ol (T-4-ol), a bioactive monoterpene alcohol and the major constituent of tea tree oil (TTO), has made its way into translational research. Recent literature on T-4-ol strongly indicates its diverse pharmacological properties, including but not limited to antimicrobial, antivirulent, anti-oxidant, anti-inflammatory, anti-hypertensive, and anti-cancer effects. Hence, this review is the first to provide a comprehensive overview of the sources, bioavailability, safety, pharmaceutical delivery systems, and multifaceted biological properties of T-4-ol, emphasizing its medicinal potential for widescale application. The antibacterial and antifungal effectiveness of T-4-ol has been discussed, encompassing its role in combating a broad spectrum of bacterial and fungal pathogens. The review delves into the antivirulent prospects of T-4-ol, shedding light on its ability to attenuate virulence and mitigate bacterial pathogenesis. Scientific literature on the anti-oxidant and anti-inflammatory activity of T-4-ol highlighting its role in neutralizing reactive oxygen species and modulating inflammatory pathways has also been collated. Furthermore, the review elaborates on the cardioprotective and anti-hypertensive properties of T-4-ol and augments literature on its anti-cancer mechanism against various cancer cell lines. The review also provides in-depth knowledge of the pharmaceutical formulations of T-4-ol and recent knowledge about its application in clinical/field trials. The exploration of these diverse attributes positions T-4-ol as a promising candidate for further research and therapeutic repurposing in various biomedical applications.
Collapse
Affiliation(s)
- Prerna
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
6
|
Arafat K, Al-Azawi AM, Sulaiman S, Attoub S. Exploring the Anticancer Potential of Origanum majorana Essential Oil Monoterpenes Alone and in Combination against Non-Small Cell Lung Cancer. Nutrients 2023; 15:5010. [PMID: 38068868 PMCID: PMC10708317 DOI: 10.3390/nu15235010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/09/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Lung cancer is the second most commonly diagnosed cancer and has the highest mortality rate worldwide despite the remarkable advances in its treatment. Origanum majorana Essential Oil (OMEO) has been shown to be effective against non-small cell lung cancer (NSCLC) cells, decreasing their viability and colony growth in vitro, as well as inhibiting tumor growth in chick embryo chorioallantoic membranes (CAM) and nude mice in vivo. OMEO is mainly composed of four monoterpenes, namely terpinen-4-ol, sabinene hydrate, α-terpinene, and γ-terpinene. In this study, we aimed to investigate the potential anticancer effects of these monoterpenes, either alone or in combination, on NSCLC. Our findings indicate that these four monoterpenes significantly decreased NSCLC cell viability in a concentration-dependent manner, reduced their colony growth in vitro, and also downregulated survivin expression in these cells. Moreover, different combined mixtures of these monoterpenes further enhanced their anticancer effects on cellular viability, with a terpinen-4-ol and sabinene hydrate combination being the most potent. We also found that terpinen-4-ol, in combination with sabinene hydrate, markedly enhanced the anticancer effect of the individual monoterpenes on NSCLC viability within a shorter treatment duration through, at least in part, survivin downregulation. Furthermore, this combination enhanced the inhibition of colony growth in vitro and the tumor growth of NSCLC cells xenografted onto chick embryo CAM in vivo. Altogether, our study highlights the potential of these monoterpenes for use in further pre-clinical investigations against various cancer hallmarks.
Collapse
Affiliation(s)
- Kholoud Arafat
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; (K.A.); (A.M.A.-A.); (S.S.)
| | - Aya Mudhafar Al-Azawi
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; (K.A.); (A.M.A.-A.); (S.S.)
| | - Shahrazad Sulaiman
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; (K.A.); (A.M.A.-A.); (S.S.)
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates; (K.A.); (A.M.A.-A.); (S.S.)
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
7
|
Zhao J, Zang F, Huo X, Zheng S. Novel approaches targeting ferroptosis in treatment of glioma. Front Neurol 2023; 14:1292160. [PMID: 38020609 PMCID: PMC10659054 DOI: 10.3389/fneur.2023.1292160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Glioma is a malignant brain tumor with a high mortality rate; hence novel treatment approaches are being explored to improve patient outcomes. Ferroptosis, a newly described form of regulated cell death, is emerging as a potential therapeutic target in glioma. Ferroptosis is characterized by the accumulation of lipid peroxides due to a loss of intracellular antioxidant systems represented by the depletion of glutathione and decreased activity of glutathione peroxidase 4 (GPX4). Since glioma cells have a high demand for iron and lipid metabolism, modulation of ferroptosis may represent a promising therapeutic approach for this malignancy. Recent studies indicate that ferroptosis inducers like erastin and RSL3 display potent anticancer activity in a glioma model. In addition, therapeutic strategies, including GPX4 targeting, lipid metabolism modulation, inhibition of amino acid transporters, and ferroptosis targeting natural compounds, have shown positive results in preclinical studies. This review will provide an overview of the functions of ferroptosis in glioma and its potential as a suitable target for glioma therapy.
Collapse
Affiliation(s)
| | | | | | - Shengzhe Zheng
- Department of Neurology, Affiliated Hospital of Yanbian University, Yanbian Korean Autonomous Prefecture, Jilin, China
| |
Collapse
|
8
|
Li X, He A, Liu Y, Huang Y, Zhang X. Bioinformatics identification of ferroptosis-related genes and therapeutic drugs in rheumatoid arthritis. Front Med (Lausanne) 2023; 10:1192153. [PMID: 37521346 PMCID: PMC10374025 DOI: 10.3389/fmed.2023.1192153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Rheumatoid arthritis (RA) is a chronic immune disease characterized by synovial inflammation and bone destruction, with a largely unclear etiology. Evidence has indicated that ferroptosis may play an increasingly important role in the onset and development of RA. However, ferroptosis-related genes are still largely unexplored in RA. Therefore, this work focused on identifying and validating the potential ferroptosis-related genes involved in RA through bioinformatics analysis. Methods We screened differentially expressed ferroptosis-related genes (DEFGs) between RA patients and healthy individuals based on GSE55235 dataset. Subsequently, correlation analysis, protein-protein interaction (PPI) network analysis, GO, and KEGG enrichment analyses were performed using these DEFGs. Finally, our results were validated by GSE12021 dataset. Results We discovered 34 potential DEFGs in RA based on bioinformatics analysis. According to functional enrichment analysis, these genes were mainly enriched in HIF-1 signaling pathway, FoxO signaling pathway, and Ferroptosis pathway. Four genes (GABARPL1, DUSP1, JUN, and MAPK8) were validated to be downregulated by GSE12021 dataset and were diagnostic biomarkers and therapeutic targets for RA via the regulation of ferroptosis. Discussion Our results help shed more light on the pathogenesis of RA. Ferroptosis-related genes in RA are valuable diagnostic biomarkers and they will be exploited clinically as therapeutic targets in the future.
Collapse
Affiliation(s)
- Xianbin Li
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, Guangdong, China
- School of Computer Science of Information Technology, Qiannan Normal University for Nationalities, Duyun, Guizhou, China
| | - Andong He
- Department of Respiratory and Critical Medicine, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yue Liu
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, Guangdong, China
| | - Yuye Huang
- Department of Respiratory and Critical Medicine, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Xueli Zhang
- Department of Medical Technology, Zhengzhou Railway Vocational and Technical College, Zhengzhou, Henan, China
| |
Collapse
|