1
|
van Aubel G, Van Cutsem E, Emond A, Métillon G, Cordier É, Van Cutsem P. Dual Transcriptomic and Metabolomic Analysis of Elicited Flax Sheds Light on the Kinetics of Immune Defense Activation Against the Biotrophic Pathogen Oidium lini. PHYTOPATHOLOGY 2024; 114:1904-1916. [PMID: 38748518 DOI: 10.1094/phyto-02-24-0070-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Flax (Linum usitatissimum) grown under controlled conditions displayed genotype-dependent resistance to powdery mildew (Oidium lini) following COS-OGA (comprising chitosan- and pectin-derived oligomers) elicitor application. The present study reveals a two-step immune response in plants preventively challenged with the elicitor: an initial, rapid response characterized by the transcription of defense genes whose protein products act in contact with or within the cell wall, where biotrophic pathogens initially thrive, followed by a prolonged activation of cell wall peroxidases and accumulation of secondary metabolites. Thus, dozens of genes encoding membrane receptors, pathogenesis-related proteins, and wall peroxidases were initially overexpressed. Repeated COS-OGA treatments had a transient effect on the transcriptome response while cumulatively remodeling the metabolome over time, with a minimum of two applications required for maximal metabolomic shifts. Secondary metabolites, in particular terpenoids and phenylpropanoids, emerged as major components of this secondary defense response alongside pathogenesis-related proteins and wall peroxidases. The sustained accumulation of secondary metabolites, even after cessation of elicitation, contrasted with the short-lived transcriptomic response. Wall peroxidase enzyme activity also exhibited cumulative effects, increasing strongly for weeks after a third elicitor treatment. This underscores the plasticity of the plant immune response in the face of a potential infection, and the need for repeated preventive applications to achieve the full protective potential of the elicitor.
Collapse
Affiliation(s)
- Géraldine van Aubel
- Biology Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
- FytoFend S.A., 5032 Isnes, Belgium
| | | | - Amélie Emond
- Biology Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | | | - Émilie Cordier
- Biology Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Pierre Van Cutsem
- Biology Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
- FytoFend S.A., 5032 Isnes, Belgium
| |
Collapse
|
2
|
Yang H, Zhang S, Gu Y, Peng J, Huang X, Guo H, Chen L, Jiang Y, Liu M, Luo X, Xie J, Wan X. Identification and variation analysis of the composition and content of essential oil and fragrance compounds in Phoebe zhennan wood at different tree ages. FRONTIERS IN PLANT SCIENCE 2024; 15:1368894. [PMID: 38595765 PMCID: PMC11002133 DOI: 10.3389/fpls.2024.1368894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024]
Abstract
Wood essential oil and wood products with special fragrances are high value-added forest products. Despite the availability of essential oil and volatile organic compounds (VOCs) from Phoebe zhennan wood, their variation and dependence on tree age have not been examined. After essential oil extraction and wood processing, the yields and compositions of essential oils and VOCs in wood from P. zhennan trees of different ages (10a, 30a, and 80a) were determined. The yield of essential oil from 30a wood was significantly greater than that from 10a and 80a wood. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) revealed 672 and 41 volatile compounds, respectively, in the essential oil and wood, the majority of which exhibited large fluctuations in relative content and composition depending on tree age. Sesquiterpenoids, fatty acids and conjugates may greatly contribute to the main components of essential oil from wood. Almost all major sesquiterpenoid compounds, such as caryophyllene α-oxide, eudesmo, and cubebene, were identified in the essential oils from the 30a and 80a wood, and their relative contents were much greater than those in the 10a wood. The main components of the wood fragrance were sesquiterpenoids. The types and relative contents of sesquiterpenoids from wood increased with tree age. These results suggest that choosing wood from trees of a suitable age will significantly improve the efficiency of wood utilization.
Collapse
Affiliation(s)
- Hanbo Yang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Shuaiying Zhang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yunjie Gu
- Sichuan Academy of Forestry, Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Chengdu, China
| | - Jian Peng
- Sichuan Academy of Forestry, Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Chengdu, China
| | - Xin Huang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Hongying Guo
- Sichuan Academy of Grassland Sciences, Chengdu, China
| | - Lianghua Chen
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Yongze Jiang
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Minhao Liu
- Sichuan Academy of Forestry, Sichuan Key Laboratory of Ecological Restoration and Conservation for Forest and Wetland, Chengdu, China
| | - Xiandan Luo
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Jiaxin Xie
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Wan
- Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, National Forestry and Grassland Administration Key Laboratory of Forest Resource Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|