1
|
Figueiredo da Silva J, Roshanasan A, Bus M, Fotiadis D, Knoll AW, van Esch JH, Wolf H. Control of a Gel-Forming Chemical Reaction Network Using Light-Triggered Proton Pumps. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8071-8080. [PMID: 40105355 PMCID: PMC11966745 DOI: 10.1021/acs.langmuir.4c04581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/05/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
Numerous metabolic processes in nature are governed by extrinsic stimuli such as light and pH variations, which afford opportunities for synthetic and biological applications. In developing a multisensor apparatus, we have integrated submicrometer purple membrane patches, each harboring bacteriorhodopsin, onto a surface. Bacteriorhodopsin is a light-driven proton pump. We conducted monitoring of the interactions between this system and a pH-responsive supramolecular hydrogel to evaluate fibrous matrix growth. Initial photostimulation induced localized reductions in pH at the membrane surface, thereby catalyzing fibrogenesis within the hydrogel. Utilizing liquid atomic force microscopy alongside confocal laser scanning microscopy, we observed the hydrogel's morphogenesis and structural adaptations in real time. The system adeptly modulated microscale pH environments, fostering targeted fibrous development within the hydrogel matrix. This elucidates the potential for engineering responsive materials that emulate natural bioprocesses.
Collapse
Affiliation(s)
- Jacqueline Figueiredo da Silva
- IBM
Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
- Department
of Chemical Engineering, Delft University
of Technology, Van der
Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Ardeshir Roshanasan
- Department
of Chemical Engineering, Delft University
of Technology, Van der
Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Marcel Bus
- Department
of Chemical Engineering, Delft University
of Technology, Van der
Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Dimitrios Fotiadis
- Institute
of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland
| | - Armin W. Knoll
- IBM
Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Jan H. van Esch
- Department
of Chemical Engineering, Delft University
of Technology, Van der
Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Heiko Wolf
- IBM
Research Europe - Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
2
|
Ayoub N, Djabeur N, Harder D, Jeckelmann JM, Ucurum Z, Hirschi S, Fotiadis D. Actinorhodopsin: an efficient and robust light-driven proton pump for bionanotechnological applications. Sci Rep 2025; 15:4054. [PMID: 39900604 PMCID: PMC11790970 DOI: 10.1038/s41598-025-88055-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Actinorhodopsins are encoded by a distinct group of microbial rhodopsin (MR) genes predominant in non-marine actinobacteria. Despite their role in the global energy cycle and potential for bionanotechnological applications, our understanding of actinorhodopsin proteins is limited. Here, we characterized the actinorhodopsin RlActR from the freshwater actinobacterium Rhodoluna lacicola, which conserves amino acid residues critical for light-driven proton pumping found in MRs. RlActR was efficiently overexpressed in Escherichia coli in milligram amounts and isolated with high purity and homogeneity. The purified RlActR absorbed green light and its primary proton acceptor exhibited a mildly acidic apparent pKa. Size-exclusion chromatography of RlActR purified in the relatively mild and harsh detergents 5-cyclohexyl-1-pentyl-β-D-maltoside and n-octyl-β-D-glucopyranoside revealed highly homogeneous oligomers and no disruption into monomers, indicating significant robustness of the RlActR oligomer. Cryo-electron microscopy and 2D classification of protein particles provided a projection structure identifying the oligomeric state of RlActR as a pentamer. Efficient establishment of a proton gradient across lipid membranes upon light illumination was demonstrated using RlActR-overexpressing E. coli cells and reconstituted RlActR proteoliposomes. In summary, these features make RlActR an attractive energizing building block for the bottom-up assembly of molecular systems for bionanotechnological applications.
Collapse
Affiliation(s)
- Nooraldeen Ayoub
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
| | - Nadia Djabeur
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
| | - Daniel Harder
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
| | - Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
| | - Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, CH-3012, Bern, Switzerland.
| |
Collapse
|
3
|
Harder D, Ritzmann N, Ucurum Z, Müller DJ, Fotiadis D. Light Color-Controlled pH-Adjustment of Aqueous Solutions Using Engineered Proteoliposomes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307524. [PMID: 38342618 PMCID: PMC11022694 DOI: 10.1002/advs.202307524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/16/2024] [Indexed: 02/13/2024]
Abstract
Controlling the pH at the microliter scale can be useful for applications in research, medicine, and industry, and therefore represents a valuable application for synthetic biology and microfluidics. The presented vesicular system translates light of different colors into specific pH changes in the surrounding solution. It works with the two light-driven proton pumps bacteriorhodopsin and blue light-absorbing proteorhodopsin Med12, that are oriented in opposite directions in the lipid membrane. A computer-controlled measuring device implements a feedback loop for automatic adjustment and maintenance of a selected pH value. A pH range spanning more than two units can be established, providing fine temporal and pH resolution. As an application example, a pH-sensitive enzyme reaction is presented where the light color controls the reaction progress. In summary, light color-controlled pH-adjustment using engineered proteoliposomes opens new possibilities to control processes at the microliter scale in different contexts, such as in synthetic biology applications.
Collapse
Affiliation(s)
- Daniel Harder
- Institute of Biochemistry and Molecular MedicineUniversity of BernBern3012Switzerland
- National Centre of Competence in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Noah Ritzmann
- National Centre of Competence in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
- Department of Biosystems Science and EngineeringETH ZürichBasel4056Switzerland
| | - Zöhre Ucurum
- Institute of Biochemistry and Molecular MedicineUniversity of BernBern3012Switzerland
| | - Daniel J. Müller
- National Centre of Competence in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
- Department of Biosystems Science and EngineeringETH ZürichBasel4056Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular MedicineUniversity of BernBern3012Switzerland
- National Centre of Competence in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| |
Collapse
|
4
|
Hirschi S, Ward TR, Meier WP, Müller DJ, Fotiadis D. Synthetic Biology: Bottom-Up Assembly of Molecular Systems. Chem Rev 2022; 122:16294-16328. [PMID: 36179355 DOI: 10.1021/acs.chemrev.2c00339] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bottom-up assembly of biological and chemical components opens exciting opportunities to engineer artificial vesicular systems for applications with previously unmet requirements. The modular combination of scaffolds and functional building blocks enables the engineering of complex systems with biomimetic or new-to-nature functionalities. Inspired by the compartmentalized organization of cells and organelles, lipid or polymer vesicles are widely used as model membrane systems to investigate the translocation of solutes and the transduction of signals by membrane proteins. The bottom-up assembly and functionalization of such artificial compartments enables full control over their composition and can thus provide specifically optimized environments for synthetic biological processes. This review aims to inspire future endeavors by providing a diverse toolbox of molecular modules, engineering methodologies, and different approaches to assemble artificial vesicular systems. Important technical and practical aspects are addressed and selected applications are presented, highlighting particular achievements and limitations of the bottom-up approach. Complementing the cutting-edge technological achievements, fundamental aspects are also discussed to cater to the inherently diverse background of the target audience, which results from the interdisciplinary nature of synthetic biology. The engineering of proteins as functional modules and the use of lipids and block copolymers as scaffold modules for the assembly of functionalized vesicular systems are explored in detail. Particular emphasis is placed on ensuring the controlled assembly of these components into increasingly complex vesicular systems. Finally, all descriptions are presented in the greater context of engineering valuable synthetic biological systems for applications in biocatalysis, biosensing, bioremediation, or targeted drug delivery.
Collapse
Affiliation(s)
- Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Wolfgang P Meier
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Daniel J Müller
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland.,Molecular Systems Engineering, National Centre of Competence in Research (NCCR), 4002 Basel, Switzerland
| |
Collapse
|
5
|
Schubert L, Langner P, Ehrenberg D, Lorenz-Fonfria VA, Heberle J. Protein conformational changes and protonation dynamics probed by a single shot using quantum-cascade-laser-based IR spectroscopy. J Chem Phys 2022; 156:204201. [PMID: 35649857 DOI: 10.1063/5.0088526] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mid-IR spectroscopy is a powerful and label-free technique to investigate protein reactions. In this study, we use quantum-cascade-laser-based dual-comb spectroscopy to probe protein conformational changes and protonation events by a single-shot experiment. By using a well-characterized membrane protein, bacteriorhodopsin, we provide a comparison between dual-comb spectroscopy and our homebuilt tunable quantum cascade laser (QCL)-based scanning spectrometer as tools to monitor irreversible reactions with high time resolution. In conclusion, QCL-based infrared spectroscopy is demonstrated to be feasible for tracing functionally relevant protein structural changes and proton translocations by single-shot experiments. Thus, we envisage a bright future for applications of this technology for monitoring the kinetics of irreversible reactions as in (bio-)chemical transformations.
Collapse
Affiliation(s)
- Luiz Schubert
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Pit Langner
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - David Ehrenberg
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Victor A Lorenz-Fonfria
- Institute of Molecular Science, Universitat de Valencia, Catedrático José Beltrán Martínez, No. 2, 46980 Paterna, Spain
| | - Joachim Heberle
- Experimental Molecular Biophysics, Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
6
|
La Greca M, Chen JL, Schubert L, Kozuch J, Berneiser T, Terpitz U, Heberle J, Schlesinger R. The Photoreaction of the Proton-Pumping Rhodopsin 1 From the Maize Pathogenic Basidiomycete Ustilago maydis. Front Mol Biosci 2022; 9:826990. [PMID: 35281268 PMCID: PMC8913941 DOI: 10.3389/fmolb.2022.826990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/25/2022] [Indexed: 01/25/2023] Open
Abstract
Microbial rhodopsins have recently been discovered in pathogenic fungi and have been postulated to be involved in signaling during the course of an infection. Here, we report on the spectroscopic characterization of a light-driven proton pump rhodopsin (UmRh1) from the smut pathogen Ustilago maydis, the causative agent of tumors in maize plants. Electrophysiology, time-resolved UV/Vis and vibrational spectroscopy indicate a pH-dependent photocycle. We also characterized the impact of the auxin hormone indole-3-acetic acid that was shown to influence the pump activity of UmRh1 on individual photocycle intermediates. A facile pumping activity test was established of UmRh1 expressed in Pichia pastoris cells, for probing proton pumping out of the living yeast cells during illumination. We show similarities and distinct differences to the well-known bacteriorhodopsin from archaea and discuss the putative role of UmRh1 in pathogenesis.
Collapse
Affiliation(s)
- Mariafrancesca La Greca
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jheng-Liang Chen
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Luiz Schubert
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Jacek Kozuch
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Tim Berneiser
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Joachim Heberle
- Institute of Experimental Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Berlin, Germany
| | - Ramona Schlesinger
- Institute of Experimental Physics, Genetic Biophysics, Freie Universität Berlin, Berlin, Germany
- *Correspondence: Ramona Schlesinger,
| |
Collapse
|