1
|
Leonés A, Salaris V, Peponi L, Lieblich M, Muñoz-Bonilla A, Fernández-García M, López D. Bioactivity and Antibacterial Analysis of Plasticized PLA Electrospun Fibers Reinforced with MgO and Mg(OH) 2 Nanoparticles. Polymers (Basel) 2024; 16:1727. [PMID: 38932077 PMCID: PMC11207589 DOI: 10.3390/polym16121727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
In this work, we focused on the bioactivity and antibacterial behavior of PLA-based electrospun fibers, efibers, reinforced with both MgO and Mg(OH)2 nanoparticles, NPs. The evolution of PLA-based efibers was followed in terms of morphology, FTIR, XRD, and visual appearance. The bioactivity was discussed in terms of hydroxyapatite growth after 28 days, considered as T28, of immersion in simulated body fluid, SBF. In particular, the biomineralization process evidenced after immersion in SBF started at T14 in both systems. The number of precipitated crystals increased by increasing the amount of both NPs. The chemical composition of the precipitated crystals was also characterized in terms of the Ca/P molar ratio after T28 of immersion in SBF, indicating the presence of hydroxyapatite on the surface of both reinforced efibers. Moreover, a reduction in the average diameter of the PLA-based efibers was observed, reaching a maximum reduction of 46 and 60% in the average diameter of neat PLA and PLA:OLA efibers, respectively, after 28 days of immersion in SBF. The antibacterial behavior of the MgO and Mg(OH)2 NPs in the PLA-based electrospun fibers was tested against Escherichia coli, E. coli, as the Gram-negative bacteria, and Staphylococcus aureus, S. aureus, as the Gram-positive bacteria, obtaining the best antibacterial activity against the Gram-negative bacteria E. coli of 21 ± 2% and 34 ± 6% for the highest concentration of MgO and Mg(OH)2 NPs, respectively.
Collapse
Affiliation(s)
- Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.)
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.)
| | - Marcela Lieblich
- Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), 28040 Madrid, Spain
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.)
| | - Marta Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.)
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.)
| |
Collapse
|
2
|
Leonés A, Peponi L, García-Martínez JM, Collar EP. Study on the Tensile Behavior of Woven Non-Woven PLA/OLA/MgO Electrospun Fibers. Polymers (Basel) 2023; 15:3973. [PMID: 37836022 PMCID: PMC10574995 DOI: 10.3390/polym15193973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The present work deeply studied the mechanical behavior of woven non-woven PLA/OLA/MgO electrospun fibers, efibers, by using Box-Wilson surface response methodology. This work follows up a previous one where both the diameters and the thermal response of such efibers were discussed in terms of both the different amounts of magnesium oxide nanoparticles, MgO, as well as of the oligomer (lactic acid), OLA, used as plasticizer. The results of both works, in term of diameters, degree of crystallinity, and mechanical response, can be strongly correlated to each other, as reported here. In particular, the strain mechanism of PLA/OLA/MgO efibers was studied, showing an orientation of efibers parallel to the applied stress and identifying the mechanically weakest points that yielded the start of the breakage of efibers. Moreover, we identified 1.5 wt% as the critical amount of MgO, above which the plasticizing effect of OLA was weaker as the amount of both components increased. Moreover, the minimum elastic modulus value took place at 15 wt% of OLA, in agreement with the previously reported convergence point in the evolution of the degree of crystallinity. Regarding the yield point, a concentration of OLA between 20 and 30 wt% led to a slight improvement in the yielding capability in terms of tensile strength in comparison with neat PLA efibers. Therefore, the approach presented here permits the design of tailor-made electrospun nanocomposites with specific mechanical requirements.
Collapse
Affiliation(s)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (J.-M.G.-M.); (E.P.C.)
| | | | | |
Collapse
|
3
|
Leonés A, Salaris V, Ramos Aranda I, Lieblich M, López D, Peponi L. Thermal Properties and In Vitro Biodegradation of PLA-Mg Filaments for Fused Deposition Modeling. Polymers (Basel) 2023; 15:polym15081907. [PMID: 37112054 PMCID: PMC10143554 DOI: 10.3390/polym15081907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Additive manufacturing, in particular the fused deposition method, is a quite new interesting technique used to obtain specific 3D objects by depositing layer after layer of material. Generally, commercial filaments can be used in 3D printing. However, the obtention of functional filaments is not so easy to reach. In this work, we obtain filaments based on poly(lactic acid), PLA, reinforced with different amounts of magnesium, Mg, microparticles, using a two-step extrusion process, in order to study how processing can affect the thermal degradation of the filaments; we additionally study their in vitro degradation, with a complete release of Mg microparticles after 84 days in phosphate buffer saline media. Therefore, considering that we want to obtain a functional filament for further 3D printing, the simpler the processing, the better the result in terms of a scalable approach. In our case, we obtain micro-composites via the double-extrusion process without degrading the materials, with good dispersion of the microparticles into the PLA matrix without any chemical or physical modification of the microparticles.
Collapse
Affiliation(s)
- Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Calle Juan de la Cierva 2, 28006 Madrid, Spain
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Calle Juan de la Cierva 2, 28006 Madrid, Spain
| | - Ignacio Ramos Aranda
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Calle Juan de la Cierva 2, 28006 Madrid, Spain
| | - Marcela Lieblich
- Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), 28040 Madrid, Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Calle Juan de la Cierva 2, 28006 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Calle Juan de la Cierva 2, 28006 Madrid, Spain
| |
Collapse
|
4
|
Centrifugal Force-Spinning to Obtain Multifunctional Fibers of PLA Reinforced with Functionalized Silver Nanoparticles. Polymers (Basel) 2023; 15:polym15051240. [PMID: 36904481 PMCID: PMC10006974 DOI: 10.3390/polym15051240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
The design and development of multifunctional fibers awakened great interest in biomaterials and food packaging materials. One way to achieve these materials is by incorporating functionalized nanoparticles into matrices obtained by spinning techniques. Here, a procedure for obtaining functionalized silver nanoparticles through a green protocol, using chitosan as a reducing agent, was implemented. These nanoparticles were incorporated into PLA solutions to study the production of multifunctional polymeric fibers by centrifugal force-spinning. Multifunctional PLA-based microfibers were obtained with nanoparticle concentrations varying from 0 to 3.5 wt%. The effect of the incorporation of nanoparticles and the method of preparation of the fibers on the morphology, thermomechanical properties, biodisintegration, and antimicrobial behavior, was investigated. The best balance in terms of thermomechanical behavior was obtained for the lowest amount of nanoparticles, that is 1 wt%. Furthermore, functionalized silver nanoparticles confer antibacterial activity to the PLA fibers, with a percentage of killing bacteria between 65 and 90%. All the samples turned out to be disintegrable under composting conditions. Additionally, the suitability of the centrifugal force-spinning technique for producing shape-memory fiber mats was tested. Results demonstrate that with 2 wt% of nanoparticles a good thermally activated shape-memory effect, with high values of fixity and recovery ratios, is obtained. The results obtained show interesting properties of the nanocomposites to be applied as biomaterials.
Collapse
|
5
|
Hydrolytic Degradation and Bioactivity of Electrospun PCL-Mg-NPs Fibrous Mats. Molecules 2023; 28:molecules28031001. [PMID: 36770668 PMCID: PMC9920502 DOI: 10.3390/molecules28031001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
In this work, the in vitro degradation behavior of nanofibers was investigated in phosphate buffer solution (PBS) and simulated body fluid (SBF) to study their degradation behavior, as well as their bioactivity. The degradation was studied at different immersion times in order to evaluate how the presence of Mg-based nanoparticles can affect the degradation in terms of morphology, crystallinity, degradation rate and pH changes, and finally to evaluate the bioactivity of PCL-based electrospun nanofibers. We found that the degradation of the materials takes more than 3 months; however, the presence of nanoparticles seems to have an accelerating effect on the degradation of the electrospun nanofibers based on PCL. In fact, a reduction in diameter of almost 50% was observed with the highest content of both types of nanoparticles and an increase in crystallinity after 296 days of immersion in PBS. Moreover, the carbonyl index was calculated from an FTIR analysis, and a reduction of 20-30% was observed due to the degradation effect. Additionally, the bioactivity of PCL-based electrospun nanofibers was studied and the formation of crystals on the nanofibers surface was detected, except for neat electrospun PCL related to the formation of NaCl and apatites, depending on the amount and type of nanoparticles. The presence of apatites was confirmed by an XRD analysis and FT-IR analysis observing the characteristic peaks; furthermore, the EDX analysis demonstrated the formation of apatites than can be reconducted to the presence of HA when 20 wt% of nanoparticles is added to the PCL electrospun fibers.
Collapse
|
6
|
Medeiros GB, Lima FDA, de Almeida DS, Guerra VG, Aguiar ML. Modification and Functionalization of Fibers Formed by Electrospinning: A Review. MEMBRANES 2022; 12:membranes12090861. [PMID: 36135880 PMCID: PMC9505773 DOI: 10.3390/membranes12090861] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 05/24/2023]
Abstract
The development of new materials with specific functionalities for certain applications has been increasing with the advent of nanotechnology. A technique widely used for this purpose is electrospinning, because control of several parameters involved in the process can yield nanoscale fibers. In addition to the production of innovative and small-scale materials, through structural, chemical, physical, and biological modifications in the fibers produced in electrospinning, it is possible to obtain specific properties for a given application. Thus, the produced fibers can serve different purposes, such as in the areas of sensors, catalysis, and environmental and medical fields. Given this context, this article presents a review of the electrospinning technique, addressing the parameters that influence the properties of the fibers formed and some techniques used to modify them as specific treatments that can be conducted during or after electrospinning. In situ addition of nanoparticles, changes in the configuration of the metallic collector, use of alternating current, electret fibers, core/shell method, coating, electrospray-coating, plasma, reinforcing composite materials, and thermal treatments are some of the examples addressed in this work. Therefore, this work contributes to a better comprehension of some of the techniques mentioned in the literature so far.
Collapse
Affiliation(s)
- Gabriela B. Medeiros
- Departamento de Engenharia Química, Federal University of São Carlos, Rodovia Washington Luiz, km 235-SP 310, São Carlos 13565-905, SP, Brazil
| | - Felipe de A. Lima
- Departamento de Engenharia Química, Federal University of São Carlos, Rodovia Washington Luiz, km 235-SP 310, São Carlos 13565-905, SP, Brazil
| | - Daniela S. de Almeida
- Departamento de Engenharia Ambiental, Federal University of Technology-Paraná, Avenida dos Pioneiros, 3131, Londrina 86030-370, PR, Brazil
| | - Vádila G. Guerra
- Departamento de Engenharia Química, Federal University of São Carlos, Rodovia Washington Luiz, km 235-SP 310, São Carlos 13565-905, SP, Brazil
| | - Mônica L. Aguiar
- Departamento de Engenharia Química, Federal University of São Carlos, Rodovia Washington Luiz, km 235-SP 310, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
7
|
Salaris V, Leonés A, López D, Kenny JM, Peponi L. A Comparative Study on the Addition of MgO and Mg(OH)
2
Nanoparticles into PCL Electrospun Fibers. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros (ICTP‐CSIC) C/Juan de la Cierva 3 Madrid 28006 Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST‐ CSIC) Madrid 28006 Spain
| | - Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP‐CSIC) C/Juan de la Cierva 3 Madrid 28006 Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST‐ CSIC) Madrid 28006 Spain
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP‐CSIC) C/Juan de la Cierva 3 Madrid 28006 Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST‐ CSIC) Madrid 28006 Spain
| | - José Maria Kenny
- Civil and Environmental Engineering Department and UDR INSTM University of Perugia STM Group Strada di Pentima 4 Terni 05100 Italy
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP‐CSIC) C/Juan de la Cierva 3 Madrid 28006 Spain
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST‐ CSIC) Madrid 28006 Spain
| |
Collapse
|
8
|
Leonés A, Peponi L, Fiori S, Lieblich M. Effect of the Addition of MgO Nanoparticles on the Thermally-Activated Shape Memory Behavior of Plasticized PLA Electrospun Fibers. Polymers (Basel) 2022; 14:polym14132657. [PMID: 35808702 PMCID: PMC9268919 DOI: 10.3390/polym14132657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 01/27/2023] Open
Abstract
In this work, the thermally-activated shape memory behavior of poly(lactic acid)-based electrospun fibers (PLA-based efibers) reinforced with different amounts of magnesium oxide (MgO) nanoparticles (NPs) was studied at different temperatures. In particular, MgO NPs were added at different concentrations, such as 0.1, 0.5, 1 and 3 wt%, with respect to the PLA matrix. The glass-transition temperature of PLA-based efibers was modulated by adding a 20 wt% of oligomer lactic acid as plasticizer. Once the plasticized PLA-based efibers were obtained and basically characterized in term of morphology as well as thermal and mechanical properties, thermo-mechanical cycles were carried out at 60 °C and 45 °C in order to study their thermally-activated shape memory response, demonstrating that their crystalline nature strongly affects their shape memory behavior. Importantly, we found that the plastificant effect in the mechanical response of the reinforced plasticized PLA efibers is balanced with the reinforcing effect of the MgO NPs, obtaining the same mechanical response of neat PLA fibers. Finally, both the strain recovery and strain fixity ratios of each of the plasticized PLA-based efibers were calculated, obtaining excellent thermally-activated shape memory response at 45 °C, demonstrating that 1 wt% MgO nanoparticles was the best concentration for the plasticized system.
Collapse
Affiliation(s)
- Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
- Correspondence:
| | - Stefano Fiori
- Condensia Química SA, R&D Department, C/La Cierva 8, 08184 Barcelona, Spain;
| | - Marcela Lieblich
- Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), 28040 Madrid, Spain;
| |
Collapse
|
9
|
Leonés A, Peponi L, García-Martínez JM, Collar EP. Compositional Influence on the Morphology and Thermal Properties of Woven Non-Woven Mats of PLA/OLA/MgO Electrospun Fibers. Polymers (Basel) 2022; 14:polym14102092. [PMID: 35631974 PMCID: PMC9144131 DOI: 10.3390/polym14102092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
In the present work, a statistical study of the morphology and thermal behavior of poly(lactic acid) (PLA)/oligomer(lactic acid) (OLA)/magnesium oxide nanoparticles (MgO), electrospun fibers (efibers) has been carried out. The addition of both, OLA and MgO, is expected to modify the final properties of the electrospun PLA-based nanocomposites for their potential use in biomedical applications. Looking for the compositional optimization of these materials, a Box−Wilson design of experiment was used, taking as dependent variables the average fiber diameter as the representative of the fiber morphologies, as well as the glass transition temperature (Tg) and the degree of crystallinity (Xc) as their thermal response. The results show <r2> values of 73.76% (diameter), 88.59% (Tg) and 75.61% (Xc) for each polynomial fit, indicating a good correlation between both OLA and MgO, along with the morphological as well as the thermal behavior of the PLA-based efibers in the experimental space scanned.
Collapse
Affiliation(s)
- Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (J.-M.G.-M.); (E.P.C.)
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (J.-M.G.-M.); (E.P.C.)
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
- Correspondence:
| | - Jesús-María García-Martínez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (J.-M.G.-M.); (E.P.C.)
| | - Emilia P. Collar
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (J.-M.G.-M.); (E.P.C.)
| |
Collapse
|
10
|
Shape-Memory Materials via Electrospinning: A Review. Polymers (Basel) 2022; 14:polym14050995. [PMID: 35267818 PMCID: PMC8914658 DOI: 10.3390/polym14050995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/26/2022] [Indexed: 01/27/2023] Open
Abstract
This review aims to point out the importance of the synergic effects of two relevant and appealing polymeric issues: electrospun fibers and shape-memory properties. The attention is focused specifically on the design and processing of electrospun polymeric fibers with shape-memory capabilities and their potential application fields. It is shown that this field needs to be explored more from both scientific and industrial points of view; however, very promising results have been obtained up to now in the biomedical field and also as sensors and actuators and in electronics.
Collapse
|
11
|
Effect of Magnesium Addition and High Energy Processing on the Degradation Behavior of Iron Powder in Modified Hanks’ Solution for Bioabsorbable Implant Applications. METALS 2022. [DOI: 10.3390/met12010078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
This paper shows the results of applying a combination of high energy processing and magnesium (Mg) as an alloying element in a strategy for enhancing the degradation rate of iron (Fe) for applications in the field of non-permanent medical implants. For this purpose, Fe powder was milled with 5 wt% of Mg (Fe5Mg) and its microstructure and characterized degradation behavior. As-received Fe powder was also milled in order to distinguish between the effects due to high energy processing from those due to the presence of Mg. The powders were prepared by high energy planetary ball milling for 16 h. The results show that the initial crystallite size diminishes from >150 nm to 16 nm for Fe and 46 nm for Fe5Mg. Static degradation tests of loose powder particles were performed in Hanks’ solution. Visual inspection of the immersed powders and the X-ray diffraction (XRD) phase quantification indicate that Fe5Mg exhibited the highest degradation rate followed by milled Fe and as received Fe, in this order. The analysis of degradation products of Fe5Mg showed that they consist on magnesium ferrite and pyroaurite, which are known to present good biocompatibility and low toxicity. Differences in structural features and degradation behaviors of milled Fe and milled Fe5Mg suggest the effective dissolution of Mg in the Fe lattice. Based on the obtained results, it can be said that Fe5Mg powder would be a suitable candidate for non-permanent medical implants with a higher degradation rate than Fe.
Collapse
|
12
|
Magnesium Nanoparticle Synthesis from Powders via Pulsed Laser Ablation in Liquid for Nanocolloid Production. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112210974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Magnesium nanoparticles of various mean diameters (53–239 nm) were synthesised in this study via pulsed laser ablation in liquid (PLAL) from millimetre sized magnesium powders within isopropyl alcohol. It was observed via a 3 × 3 full factorial design of experiments that the processing parameters can control the nanoparticle distribution to produce three size-distribution types (bimodal, skewed and normal). Ablation times of 2, 5, and 25 min where investigated. An ablation time of 2 min produced a bimodal distribution with the other types seen at higher periods of processing. Mg nanoparticle Ultraviolet–Visible spectroscopy (UV–Vis) absorbance at 204 nm increased linearly with increasing ablation time, indicating an increase in nanoparticle count. The colloidal density (mg/mL) generally increased with increasing nanoparticle mean diameter as noted via increasing UV–Vis absorbance. High laser scan speeds (within the studied range of 3000–3500 mm/s) tend to increase the nanoparticle count/yield. For the first time, the effect of scan speed on colloidal density, UV–Vis absorbance and nanoparticle diameter from metallic powder ablation was investigated and is reported herein. The nanoparticles formed dendritic structures after being drop cast on aluminium foil as observed via field emission scanning electron microscope analysis. Dynamic light scattering was used to measure the size of the nanoparticles. Magnesium nanoparticle inks show promise for use in the fabrication conductive tracks or thermal insulation in electronics.
Collapse
|
13
|
Leonés A, Salaris V, Mujica-Garcia A, Arrieta MP, Lopez D, Lieblich M, Kenny JM, Peponi L. PLA Electrospun Fibers Reinforced with Organic and Inorganic Nanoparticles: A Comparative Study. Molecules 2021; 26:molecules26164925. [PMID: 34443512 PMCID: PMC8401602 DOI: 10.3390/molecules26164925] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 11/17/2022] Open
Abstract
In this work, different poly (lactic acid) (PLA)-based nanocomposite electrospun fibers, reinforced with both organic and inorganic nanoparticles, were obtained. As organic fibers, cellulose nanocrystals, CNC, both neat and functionalized by “grafting from” reaction, chitosan and graphene were used; meanwhile, hydroxyapatite and silver nanoparticles were used as inorganic fibers. All of the nanoparticles were added at 1 wt% with respect to the PLA matrix in order to be able to compare their effect. The main aim of this work was to study the morphological, thermal and mechanical properties of the different systems, looking for differences between the effects of the addition of organic or inorganic nanoparticles. No differences were found in either the glass transition temperature or the melting temperature between the different electrospun systems. However, systems reinforced with both neat and functionalized CNC exhibited an enhanced degree of crystallinity of the electrospun fibers, by up to 12.3%. From a mechanical point of view, both organic and inorganic nanoparticles exhibited a decreased elastic modulus and tensile strength in comparison to neat electrospun PLA fibers, improving their elongation at break. Furthermore, all of the organic and inorganic reinforced systems disintegrated under composting conditions after 35 days.
Collapse
Affiliation(s)
- Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.); (A.M.-G.); (M.P.A.); (D.L.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, The Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| | - Valentina Salaris
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.); (A.M.-G.); (M.P.A.); (D.L.)
| | - Alicia Mujica-Garcia
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.); (A.M.-G.); (M.P.A.); (D.L.)
- Civil and Environmental Engineering Department and UDR INSTM, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
| | - Marina P. Arrieta
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.); (A.M.-G.); (M.P.A.); (D.L.)
- Departamento de Ingeniería Química Industrial y del Medio Ambiente, Escuela Politécnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), Calle José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Grupo de Investigación: Polímeros, Caracterización y Aplicaciones (POLCA), 28006 Madrid, Spain
| | - Daniel Lopez
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.); (A.M.-G.); (M.P.A.); (D.L.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, The Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| | - Marcela Lieblich
- Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), 28040 Madrid, Spain;
| | - José Maria Kenny
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.); (A.M.-G.); (M.P.A.); (D.L.)
- Civil and Environmental Engineering Department and UDR INSTM, University of Perugia, Strada di Pentima 4, 05100 Terni, Italy
- Correspondence: (J.M.K.); (L.P.)
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (V.S.); (A.M.-G.); (M.P.A.); (D.L.)
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy, The Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
- Correspondence: (J.M.K.); (L.P.)
| |
Collapse
|
14
|
Rosehip Extract-Functionalized Magnesium Hydroxide Nanoparticles and Its Effect on Osteoblastic and Osteoclastic Cells. MATERIALS 2021; 14:ma14154172. [PMID: 34361365 PMCID: PMC8348532 DOI: 10.3390/ma14154172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 01/21/2023]
Abstract
Considering the role of magnesium in bone metabolism and the increasing relevance of plant-mediated green-synthesis, this work compares the bone cytocompatibility of magnesium hydroxide nanoparticles (NPs) produced by using pure water, Mg(OH)2, or a rosehip (RH) aqueous extract, Mg(OH)2RH. The NPs were evaluated for dose- and time-dependent effects on human osteoblastic and osteoclastic response, due to the direct involvement of the two cell types in bone metabolism. Mg(OH)2 NPs presented nanoplatelet-like morphology (mean diameter ~90 nm) and a crystalline structure (XRD analysis); the RH-mediated synthesis yielded smaller rounded particles (mean diameter <10 nm) with decreased crystallinity. On the ATR-FTIR spectra, both NPs presented the characteristic Mg-OH peaks; Mg(OH)2RH exhibited additional vibration bands associated with the presence of phytochemicals. On osteoblastic cells, NPs did not affect cell growth and morphology but significantly increased alkaline phosphatase (ALP) activity; on osteoclastic cells, particles had little effect in protein content, tartrate-resistant acid phosphatase (TRAP) activity, percentage of multinucleated cells, and cell area. However, compared with Mg(OH)2, Mg(OH)2RH increased osteoblastic differentiation by inducing ALP activity and promoting the expression of Runx2, SP7, Col1a1, and ALP, and had a negative effect on the expression of the osteoclastic genes NFATC1, CA2, and CTSK. These observations suggest the potential usefulness of Mg(OH)2RH NPs in bone regeneration.
Collapse
|
15
|
Leonés A, Peponi L, Lieblich M, Benavente R, Fiori S. In Vitro Degradation of Plasticized PLA Electrospun Fiber Mats: Morphological, Thermal and Crystalline Evolution. Polymers (Basel) 2020; 12:polym12122975. [PMID: 33322121 PMCID: PMC7763670 DOI: 10.3390/polym12122975] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
In the present work, fiber mats of poly(lactic acid), PLA, plasticized by different amounts of oligomer lactic acid, OLA, were obtained by electrospinning in order to investigate their long term hydrolytic degradation. This was performed in a simulated body fluid for up to 352 days, until the complete degradation of the samples is reached. The evolution of the plasticized electrospun mats was followed in terms of morphological, thermal, chemical and crystalline changes. Mass variation and water uptake of PLA-based electrospun mats, together with pH stability of the immersion media, were also studied during the in vitro test. The results showed that the addition of OLA increases the hydrolytic degradation rate of PLA electrospun fiber mats. Moreover, by adding different amounts of OLA, the time of degradation of the electrospun fiber mats can be modulated over the course of a year. Effectively, by increasing the amount of OLA, the diameter of the electrospun fibers decreases more rapidly during degradation. On the other hand, the degree of crystallinity and the dimension of the α crystals of the electrospun fiber mats are highly affected not only by the presence but also by the amount of OLA during the whole process.
Collapse
Affiliation(s)
- Adrián Leonés
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (R.B.)
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
| | - Laura Peponi
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (R.B.)
- Interdisciplinary Platform for “Sustainable Plastics towards a Circular Economy” (SUSPLAST-CSIC), 28006 Madrid, Spain
- Correspondence:
| | - Marcela Lieblich
- Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), 28040 Madrid, Spain;
| | - Rosario Benavente
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain; (A.L.); (R.B.)
| | - Stefano Fiori
- Condensia Química SA, R&D Department, C/La Cierva 8, 08184 Barcelona, Spain;
| |
Collapse
|