1
|
Makhlouf Z, Ali AA, Al-Sayah MH. Liposomes-Based Drug Delivery Systems of Anti-Biofilm Agents to Combat Bacterial Biofilm Formation. Antibiotics (Basel) 2023; 12:antibiotics12050875. [PMID: 37237778 DOI: 10.3390/antibiotics12050875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
All currently approved antibiotics are being met by some degree of resistance by the bacteria they target. Biofilm formation is one of the crucial enablers of bacterial resistance, making it an important bacterial process to target for overcoming antibiotic resistance. Accordingly, several drug delivery systems that target biofilm formation have been developed. One of these systems is based on lipid-based nanocarriers (liposomes), which have shown strong efficacy against biofilms of bacterial pathogens. Liposomes come in various types, namely conventional (charged or neutral), stimuli-responsive, deformable, targeted, and stealth. This paper reviews studies employing liposomal formulations against biofilms of medically salient gram-negative and gram-positive bacterial species reported recently. When it comes to gram-negative species, liposomal formulations of various types were reported to be efficacious against Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, and members of the genera Klebsiella, Salmonella, Aeromonas, Serratia, Porphyromonas, and Prevotella. A range of liposomal formulations were also effective against gram-positive biofilms, including mostly biofilms of Staphylococcal strains, namely Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus saprophyticus subspecies bovis, followed by Streptococcal strains (pneumonia, oralis, and mutans), Cutibacterium acnes, Bacillus subtilis, Mycobacterium avium, Mycobacterium avium subsp. hominissuis, Mycobacterium abscessus, and Listeria monocytogenes biofilms. This review outlines the benefits and limitations of using liposomal formulations as means to combat different multidrug-resistant bacteria, urging the investigation of the effects of bacterial gram-stain on liposomal efficiency and the inclusion of pathogenic bacterial strains previously unstudied.
Collapse
Affiliation(s)
- Zinb Makhlouf
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Amaal Abdulraqeb Ali
- Biomedical Engineering Program, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Mohammad Hussein Al-Sayah
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
2
|
Saverina EA, Frolov NA, Kamanina OA, Arlyapov VA, Vereshchagin AN, Ananikov VP. From Antibacterial to Antibiofilm Targeting: An Emerging Paradigm Shift in the Development of Quaternary Ammonium Compounds (QACs). ACS Infect Dis 2023; 9:394-422. [PMID: 36790073 DOI: 10.1021/acsinfecdis.2c00469] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms. The protective properties of biofilms and microbial resistance, even to high concentrations of biocides, cause many chronic infections in medical settings and lead to serious economic losses in various areas. A paradigm shift from individual bacterial targeting to also affecting more complex cellular frameworks is taking place and involves multiple strategies for combating biofilms with compounds that are effective at different stages of microbiome formation. Quaternary ammonium compounds (QACs) play a key role in many of these treatments and prophylactic techniques on the basis of both the use of individual antibacterial agents and combination technologies. In this review, we summarize the literature data on the effectiveness of using commercially available and newly synthesized QACs, as well as synergistic treatment techniques based on them. As an important focus, techniques for developing and applying antimicrobial coatings that prevent the formation of biofilms on various surfaces over time are discussed. The information analyzed in this review will be useful to researchers and engineers working in many fields, including the development of a new generation of applied materials; understanding biofilm surface growth; and conducting research in medical, pharmaceutical, and materials sciences. Although regular studies of antibacterial activity are still widely conducted, a promising new trend is also to evaluate antibiofilm activity in a comprehensive study in order to meet the current requirements for the development of highly needed practical applications.
Collapse
Affiliation(s)
- Evgeniya A Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia.,N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | | | | | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|
3
|
Lu P, Zhang X, Li F, Xu KF, Li YH, Liu X, Yang J, Zhu B, Wu FG. Cationic Liposomes with Different Lipid Ratios: Antibacterial Activity, Antibacterial Mechanism, and Cytotoxicity Evaluations. Pharmaceuticals (Basel) 2022; 15:ph15121556. [PMID: 36559007 PMCID: PMC9783835 DOI: 10.3390/ph15121556] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Due to their strong bacterial binding and bacterial toxicity, cationic liposomes have been utilized as effective antibacterial materials in many studies. However, few researchers have systematically compared their antibacterial activity with their mammalian cell cytotoxicity or have deeply explored their antibacterial and cytotoxicity mechanisms. Here, we prepared a series of cationic liposomes (termed CLs) using dimethyldioctadecylammonium chloride (DODAC) and lecithin at different molar ratios. CLs have the ability to effectively bind with Gram-positive and Gram-negative bacteria through electrostatic and hydrophobic interactions. Further, the CLs with high molar ratios of DODAC (30 and 40 mol%) can disrupt the bacterial wall/membrane, efficiently inducing the production of reactive oxygen species (ROS). More importantly, we carefully compared the antibacterial activity and the mammalian cell cytotoxicity of various CLs differing in DODAC contents and liposomal concentrations and revealed that, whether they are bacterial or mammalian cells, an increasing DODAC content in CLs can lead to an elevated cytotoxicity level. Further, there exists a critical DODAC contents (>20 mol%) in CLs to endow them with effective antibacterial ability. However, the variation in the DODAC content and liposomal concentration of CLs has different degrees of influence on the antibacterial activity or cytotoxicity. For example, CLs at high DODAC content (i.e., CL0.3 and CL0.4) could effectively kill both types of bacterial cells but only cause negligible toxicity to mammalian cells. We believe that a systematic comparison between the antibacterial activity and the cytotoxicity of CLs with different DODAC contents will provide an important reference for the potential clinical applications of cationic liposomes.
Collapse
Affiliation(s)
- Pengpeng Lu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 6 North Hai’erxiang Road, Nantong 226001, China
| | - Xinping Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Feng Li
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 6 North Hai’erxiang Road, Nantong 226001, China
| | - Ke-Fei Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Yan-Hong Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Jing Yang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Baofeng Zhu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 6 North Hai’erxiang Road, Nantong 226001, China
- Correspondence: (B.Z.); (F.-G.W.)
| | - Fu-Gen Wu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 6 North Hai’erxiang Road, Nantong 226001, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
- Correspondence: (B.Z.); (F.-G.W.)
| |
Collapse
|
4
|
Hossain SI, Sportelli MC, Picca RA, Gentile L, Palazzo G, Ditaranto N, Cioffi N. Green Synthesis and Characterization of Antimicrobial Synergistic AgCl/BAC Nanocolloids. ACS APPLIED BIO MATERIALS 2022; 5:3230-3240. [PMID: 35738566 PMCID: PMC9297327 DOI: 10.1021/acsabm.2c00207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All over the world, one of the major challenges is the green synthesis of potential materials against antimicrobial resistance and viruses. This study demonstrates a simple method like chemistry lab titration to synthesize green, facile, scalable, reproducible, and stable synergistic silver chloride/benzyldimethylhexadecyl-ammonium chloride (AgCl/BAC) colloidal Nanoantimicrobials (NAMs). Nanocolloidal dispersions of AgCl in an aqueous medium are prepared by using silver nitrate (AgNO3) as precursor and BAC as both sources of chloride and stabilizer, holding an asymmetric molecular structure. The synthetic approach is scalable and green. Both the morphology and stability of AgCl/BAC nanocolloids (NCs) were investigated as a function of different molar fractions of the reagents. AgCl/BAC NCs were characterized by transmission electron microscopy (TEM) and X-ray photoelectron and UV-vis spectroscopies. Zeta potential measurements revealed increasing positive potential values at every stage of the synthesis. Size distribution and hydrodynamic diameter of the particles were measured by dynamic light scattering (DLS), which predicted the formation of BAC layered structures associated with the AgCl nanoparticles (NPs). Small-angle X-ray scattering (SAXS) experiments verify the thickness of the BAC bilayer around AgCl. The produced AgCl/BAC NCs probably have synergistic antimicrobial properties from the AgCl core and the biocide BAC shell. AgCl/BAC NCs stability over months was investigated. The experimental evidence supports the morphological stability of the AgCl/BAC NCs, while higher positive zeta potential values anticipate a long-term antimicrobial effect: a higher surface charge causes NPs to be potentially more lethal to bacteria. AgCl/BAC antimicrobial aqueous colloidal suspensions will be used as additives for the industrial production of antimicrobial coatings.
Collapse
Affiliation(s)
- Syed Imdadul Hossain
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Maria Chiara Sportelli
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
| | - Rosaria Anna Picca
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Luigi Gentile
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Gerardo Palazzo
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Nicoletta Ditaranto
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| | - Nicola Cioffi
- Chemistry
Department, University of Bari “Aldo
Moro”, via E. Orabona 4 − 70126 Bari, Italy
- CSGI
(Center for Colloid and Surface Science) c/o Dept. Chemistry, via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
5
|
Synthesis and characteristics of cross-linked polymer hydrogels with embedded CdS nanocrystals. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02662-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Targhi AA, Moammeri A, Jamshidifar E, Abbaspour K, Sadeghi S, Lamakani L, Akbarzadeh I. Synergistic effect of curcumin-Cu and curcumin-Ag nanoparticle loaded niosome: Enhanced antibacterial and anti-biofilm activities. Bioorg Chem 2021; 115:105116. [PMID: 34333420 DOI: 10.1016/j.bioorg.2021.105116] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022]
Abstract
In the current study, for the first time, the synergistic activity of curcumin and silver/copper nanoparticles (NPs) was studied against Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, a unique combination of curcumin and silver/copper NPs in free and encapsulated forms was prepared and delivered through a niosomal system. For this purpose, different niosomal formulations of curcumin and metal NPs were prepared by thin film hydration method. Then, the dual drug-loaded niosomes were dispersed in chitosan hydrogel in order to widen its applications. The effect of the molar ratios of lipid to drug and surfactant to cholesterol was investigated to find the optimized noisomal nanoparticles in terms of size, polydispersity index (PDI), and entrapment efficiency (EE). The size and PDI values were measured by dynamic light scattering (DLS). Morphology and in vitro drug release kinetics of niosomes were examined by scanning and transmission electron microscopy (SEM, TEM) and dialysis method, respectively. The drug-loaded niosomes and their hydrogel counterpart were screened for investigating their antibacterial activity against S. aureus and P. aeruginosa by disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Furthermore, anti-biofilm assay and expression of biofilm-associated genes by Real-time PCR were performed to evaluate the anti-biofilm effect of NPs. In this study, the drug-loaded niosomal formulations showed good entrapment efficiencies (EE) with a sustained release profile over 72 h. Moreover, compared to free drugs, the optimized niosomal formulations increased antibacterial activity against the bacteria via promotion in the inhibition zone and reduction in MIC and MBC values. Interestingly, gel-based niosomal formulations increased the inhibition zone by about 6 mm and significantly decreased MIC and MBC values compared to niosomal formulations. Also, biofilm eradication of curcumin-metal NPs encapsulated into niosomal hydrogel was highest compared to free and niosomal drugs. Overall, curcumin-Cu or curcumin-Ag nanoparticle loaded niosomes incorporated in hydrogel hold great promise for biomedical applications.
Collapse
Affiliation(s)
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Elham Jamshidifar
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Koorosh Abbaspour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Somayeh Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| | - Lida Lamakani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
7
|
Electrodecoration and Characterization of Superparamagnetic Iron Oxide Nanoparticles with Bioactive Synergistic Nanocopper: Magnetic Hyperthermia-Induced Ionic Release for Anti-Biofilm Action. Antibiotics (Basel) 2021; 10:antibiotics10020119. [PMID: 33513680 PMCID: PMC7911805 DOI: 10.3390/antibiotics10020119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
The urgency for the availability of new antibacterial/disinfectant agents has become a worldwide priority. At the same time, along with the extensive use of other metal nanoparticles (NPs), the investigation of magnetic NPs (MNPs) in antibacterial studies has turned out to be an increasingly attractive research field. In this context, we present the preparation and characterization of superparamagnetic iron oxide NPs, electrodecorated with antimicrobial copper NPs, able to modulate the release of bioactive species not only by the NP’s stabilizer, but also through the application of a suitable magnetic field. Antimicrobial synergistic CuNPs stabilized by benzalkonium chloride have been used in the current study. We demonstrate the successful preparation of Cu@Fe3O4 MNPs composites through morphological and spectroscopic results. Additionally, an extensive magnetic characterization is reported, along with hyperthermia-induced copper ionic release. On the basis of our results, we propose a new generation of antimicrobial magnetic nanomaterials, whose bioactivity can be also tuned by the application of a magnetic field.
Collapse
|
8
|
Trout CJ, Clapp JA, Griepenburg JC. Plasmonic carriers responsive to pulsed laser irradiation: a review of mechanisms, design, and applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02062e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review focuses on interactions which govern release from plasmonic carrier systems including liposomes, polymersomes, and nanodroplets under pulsed irradiation.
Collapse
Affiliation(s)
- Cory J. Trout
- Department of Physics, Rutgers University-Camden, 227 Penn Street, Camden, NJ 08102, USA
- Department of Applied Physics, Rutgers University-Newark, 101 Warren St., Newark, NJ 07102, USA
| | - Jamie A. Clapp
- Center for Computational and Integrative Biology, Rutgers University-Camden, NJ 08102, USA
| | - Julianne C. Griepenburg
- Department of Physics, Rutgers University-Camden, 227 Penn Street, Camden, NJ 08102, USA
- Center for Computational and Integrative Biology, Rutgers University-Camden, NJ 08102, USA
| |
Collapse
|
9
|
Díez-Pascual AM. Recent Progress in Antimicrobial Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2315. [PMID: 33238368 PMCID: PMC7700142 DOI: 10.3390/nano10112315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/27/2022]
Abstract
Bacterial infections are a well-known and serious problem in numerous areas of everyday life, causing death, pain, and huge added costs to healthcare worldwide [...].
Collapse
Affiliation(s)
- Ana Maria Díez-Pascual
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, Institute of Chemistry Research "Andrés M. del Río" (IQAR), University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.6, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|