1
|
Hussain M, Ahmad Z, Ejeromedoghene O, Shehzad K, Akhtar M, Fu G. Hybrid polysaccharide film infused with polyoxometalates for inkless printing and solar ultraviolet sensing. Int J Biol Macromol 2025; 293:139308. [PMID: 39753166 DOI: 10.1016/j.ijbiomac.2024.139308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 02/22/2025]
Abstract
Inkless paper made from photochromic materials has garnered significant interest owing to its potential to reduce both ink and paper pollution during production. In this research, we synthesized a dual-material film (EC-PVP/PGMEA/PMoA) and conducted a detailed investigation of its photochromic response to visible light and its microstructural properties. Initially, the film appeared as a translucent yellow, but upon exposure to visible light, it shifted to blue with a maximum absorption peak of 2.04 a.u. The film returned to its stable yellow state either by heating at 100 °C for 1 h or by being kept in the dark at RT conditions for 20 days, aided by PGMEA. The film's hydrophobicity decreased, attributed to PEG, and its hydrophilicity was confirmed by a reduction in water contact angle from 69.9° to 37.8°. XPS and ESR analyses revealed a Mo5+ ratio of 0.42 and a signal at g = 2.017, indicating proton transfer and photo reductive interactions between PMoA particles and the EC-PVP/PGMEA matrix. This innovative study underscores the hybrid film's potential for applications in inkless printing and UV solar detection.
Collapse
Affiliation(s)
- Muzammal Hussain
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Zaheer Ahmad
- Department of Chemistry, University of Wah, Quaid Avenue, Wah Cantt 47040, Pakistan
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, Jiangsu Province, PR China
| | - Khurram Shehzad
- School of Chemistry and Chemical Engineering, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Muhammad Akhtar
- School of Transportation Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211100, PR China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China.
| |
Collapse
|
2
|
Hussain M, Kalulu M, Ahmad Z, Ejeromedoghene O, Fu G. Rapid fabrication of polyoxometalate-enhanced photo responsive films from ethyl cellulose (EC) and polyvinylpyrrolidone (PVP). Int J Biol Macromol 2024; 280:136051. [PMID: 39332562 DOI: 10.1016/j.ijbiomac.2024.136051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
Ethyl cellulose (EC), polyvinylpyrrolidone (PVP), and phosphomolybdic acid (PMoA) were the components of a new photochromic hybrid film composed of heteropoly acids (abbreviated EC-PVP/PMoA), created by solvent evaporation. The EC-PVP/PMoA mechanism, visible light photochromic behaviors, and microstructure were closely studied by transmission electron microscopy (TEM), atomic force microscopy (AFM), ultraviolet-visible (UV-visible) spectroscopy, X-ray photo electronics (XPS), and Fourier transmission infrared spectroscopy (FTIR). FTIR spectra show that neither the core structures of EC, PVP, nor the Keggin structure of PMoA in the EC-PVP/PMoA composite hybrid film were damaged during fabrication. In the presence of oxygen, the yellowish transparent hybrid film exhibited reversible photochromism and significant photochromic reactivity, becoming blue in the presence of visible light. Upon heating the film at 90 °C for 1 h its photoresponsive properties were enhanced, making the blue color more vibrant and stable due to polyethylene glycol (PEG). The XPS spectra demonstrated a proton transfer procedure during the photochromic process, and the presence of Mo+5 species indicated a photoreduction interaction between the PMoA particles and the EC-PVP matrix. To the best of our knowledge, this is the first EC-PVP combined hybrid film with POMs with promising prospects for solar UV detection and smart glass windows applications.
Collapse
Affiliation(s)
- Muzammal Hussain
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Mulenga Kalulu
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China; Sustainable Chemistry and Environment Project, Department of Chemistry, The University of Zambia, Lusaka 10101, Zambia
| | - Zaheer Ahmad
- Department of Chemistry, University of Wah, Quaid Avenue, Wah Cantt 47040, Pakistan
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, Jiangsu Province, PR China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China.
| |
Collapse
|
3
|
Qaid SMH, Ghaithan HM, Bawazir HS, Aldwayyan AS. Surface Passivation for Promotes Bi-Excitonic Amplified Spontaneous Emission in CsPb(Br/Cl) 3 Perovskite at Room Temperature. Polymers (Basel) 2023; 15:polym15091978. [PMID: 37177126 PMCID: PMC10181364 DOI: 10.3390/polym15091978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Perovskite-type lead halides exhibit promising performances in optoelectronic applications, for which lasers are one of the most promising applications. Although the bulk structure has some advantages, perovskite has additional advantages at the nanoscale owing to its high crystallinity given by a lower trap density. Although the nanoscale can produce efficient light emission, its comparatively poor chemical and colloidal stability limits further development of devices based on this material. Nevertheless, bulk perovskites are promising as optical amplifiers. There has been some developmental progress in the study of optical response and amplified spontaneous emission (ASE) as a benchmark for perovskite bulk phase laser applications. Therefore, to achieve high photoluminescence quantum yields (PLQYs) and large optical gains, material development is essential. One of the aspects in which these goals can be achieved is the incorporation of a bulk structure of high-quality crystallization films based on inorganic perovskite, such as cesium lead halide (CsPb(Br/Cl)3), in polymethyl methacrylate (PMMA) polymer and encapsulation with the optimal thickness of the polymer to achieve complete surface coverage, prevent degradation, surface states, and surface defects, and suppress emission at depth. Sequential evaporation of the perovskite precursors using a single-source thermal evaporation technique (TET) effectively deposited two layers. The PL and ASEs of the bare and modified films with a thickness of 400 nm PMMA were demonstrated. The encapsulation layer maintained the quantum yield of the perovskite layer in the air for more than two years while providing added optical gain compared to the bare film. Under a picosecond pulse laser, the PL wavelength of single excitons and ASE wavelength associated with the stimulated decay of bi-excitons were achieved. The two ASE bands were highly correlated and competed with each other; they were classified as exciton and bi-exciton recombination, respectively. According to the ASE results, bi-exciton emission could be observed in an ultrastable CsPb(Br/Cl)3 film modified by PMMA with a very low excitation energy density of 110 µJ/cm2. Compared with the bare film, the ASE threshold was lowered by approximately 5%. A bi-exciton has a binding energy (26.78 meV) smaller than the binding energy of the exciton (70.20 meV).
Collapse
Affiliation(s)
- Saif M H Qaid
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamid M Ghaithan
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Huda S Bawazir
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Aldwayyan
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Qaid SMH, Ghaithan HM, Bawazir HS, Bin Ajaj AF, AlHarbi KK, Aldwayyan AS. Successful Growth of TiO 2 Nanocrystals with {001} Facets for Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:928. [PMID: 36903806 PMCID: PMC10005624 DOI: 10.3390/nano13050928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The growth of nanocrystals (NCs) from metal oxide-based substrates with exposed high-energy facets is of particular importance for many important applications, such as solar cells as photoanodes due to the high reactivity of these facets. The hydrothermal method remains a current trend for the synthesis of metal oxide nanostructures in general and titanium dioxide (TiO2) in particular since the calcination of the resulting powder after the completion of the hydrothermal method no longer requires a high temperature. This work aims to use a rapid hydrothermal method to synthesize numerous TiO2-NCs, namely, TiO2 nanosheets (TiO2-NSs), TiO2 nanorods (TiO2-NRs), and nanoparticles (TiO2-NPs). In these ideas, a simple non-aqueous one-pot solvothermal method was employed to prepare TiO2-NSs using tetrabutyl titanate Ti(OBu)4 as a precursor and hydrofluoric acid (HF) as a morphology control agent. Ti(OBu)4 alone was subjected to alcoholysis in ethanol, yielding only pure nanoparticles (TiO2-NPs). Subsequently, in this work, the hazardous chemical HF was replaced by sodium fluoride (NaF) as a means of controlling morphology to produce TiO2-NRs. The latter method was required for the growth of high purity brookite TiO2 NRs structure, the most difficult TiO2 polymorph to synthesize. The fabricated components are then morphologically evaluated using equipment, such as transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), electron diffraction (SAED), and X-ray diffraction (XRD). In the results, the TEM image of the developed NCs shows the presence of TiO2-NSs with an average side length of about 20-30 nm and a thickness of 5-7 nm. In addition, the image TEM shows TiO2-NRs with diameters between 10 and 20 nm and lengths between 80 and 100 nm, together with crystals of smaller size. The phase of the crystals is good, confirmed by XRD. The anatase structure, typical of TiO2-NS and TiO2-NPs, and the high-purity brookite-TiO2-NRs structure, were evident in the produced nanocrystals, according to XRD. SAED patterns confirm that the synthesis of high quality single crystalline TiO2-NSs and TiO2-NRs with the exposed {001} facets are the exposed facets, which have the upper and lower dominant facets, high reactivity, high surface energy, and high surface area. TiO2-NSs and TiO2-NRs could be grown, corresponding to about 80% and 85% of the {001} outer surface area in the nanocrystal, respectively.
Collapse
Affiliation(s)
- Saif M. H. Qaid
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamid M. Ghaithan
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Huda S. Bawazir
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abrar F. Bin Ajaj
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khulod K. AlHarbi
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S. Aldwayyan
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Ghaithan HM, Qaid SMH, AlHarbi KK, Bin Ajaj AF, Al-Asbahi BA, Aldwayyan AS. Amplified Spontaneous Emission from Thermally Evaporated High-Quality Thin Films of CsPb(Br 1-xY x) 3 (Y = I, Cl) Perovskites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8607-8613. [PMID: 35777070 DOI: 10.1021/acs.langmuir.2c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a wavelength-tunable lasing material, perovskites are now generating a lot of scientific attention. Conventional solution-processed CsPbX3 perovskite films sometimes suffer unavoidable pinhole defects and poor surface morphology, severely limiting their performance on amplified spontaneous emission (ASE) and lasing application. Herein, a thermal evaporation approach is explored in our work to achieve a uniform and high-coverage CsPb(Br1-xYx)3 (Y = I, Cl) perovskites polycrystalline thin film. The ASE of these films was studied using a picosecond laser system. The ASE profile increases rapidly over the narrow peak in relation to the laser pump intensity, confirming the development of stimulated emission. ASE began when the energy density threshold was reached and ranged between 25 and 170 μJ/cm2 per pulse for perovskite materials when replacing I with Br and then Cl. This work emphasizes the notable optical properties of high-quality perovskite thin films, leading to possible accessible uses in optoelectronic applications.
Collapse
Affiliation(s)
- Hamid M Ghaithan
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saif M H Qaid
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Physics, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Khulod K AlHarbi
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abrar F Bin Ajaj
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bandar Ali Al-Asbahi
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Physics, Faculty of Science, Sana'a University, Sana'a 12544, Yemen
| | - Abdullah S Aldwayyan
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- K. A. CARE Energy Research and Innovation Center, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Mu Y, Li Y, Du P, Ren H, Monroy IT, Ibrahim M, Wen G, Liang D, Feng J, Ao J, Xie X, Li Y. Constraint Mechanism of Power Device Design Based on Perovskite Quantum Dots Pumped by an Electron Beam. SENSORS (BASEL, SWITZERLAND) 2022; 22:3721. [PMID: 35632137 PMCID: PMC9147271 DOI: 10.3390/s22103721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022]
Abstract
This paper studied the constraint mechanism for power device design based on perovskite quantum dots pumped by an electron beam. Combined with device designing, an experimental system of self-saturation luminescence and aging failure was designed for CsPbBr3 films. On this basis, we further completed the self-saturation luminescence and aging failure experiment and constructed a model of self-saturation luminescence and aging failure for CsPbBr3 device designing. Three constraints were proposed after analyzing and discussing the experimental data. Firstly, too high of a pumping current density makes it difficult to effectively promote the enhancement of luminescence efficiency. Secondly, radiation decomposition and aging failure of CsPbBr3 films are mainly related to the polarized degree of CsPbBr3 nanocrystals. Thirdly, by increasing the pumping electric field, the pumping energy can be effectively and widely delivered to the three-dimensional quantum dots film layer space, and there is a nonlinear relationship between the attenuation of the pumping energy density and the increment of the pumping electric field, which will effectively avoid the local high-energy density of instantaneous optical pumping.
Collapse
Affiliation(s)
- Yining Mu
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
- Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 400020, China
- Institute for Photonic Integration, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Yanzheng Li
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
- Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 400020, China
| | - Peng Du
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
- Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 400020, China
| | - Hang Ren
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
- Chongqing Research Institute, Changchun University of Science and Technology, Chongqing 400020, China
| | - Idelfonso Tafur Monroy
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
- Institute for Photonic Integration, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Makram Ibrahim
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
- Solar and Space Research Department, National Research Institute of Astronomy and Geophysics (NRIAG), Cairo 11421, Egypt
| | - Guanyu Wen
- Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences, Changchun 130117, China;
| | - Dong Liang
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
| | - Jianshang Feng
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
| | - Jiayu Ao
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
| | - Xiangyue Xie
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
| | - Yumeng Li
- School of Physics, Changchun University of Science and Technology, Changchun 130022, China; (Y.L.); (P.D.); (H.R.); (I.T.M.); (M.I.); (D.L.); (J.F.); (J.A.); (X.X.); (Y.L.)
| |
Collapse
|
7
|
Shen J, Meng N, Chen J, Zhu Y, Yang X, Jia Y, Li C. Poly acrylic acid-b-polystyrene -passivated CsPbBr3 perovskite quantum dots with high photoluminescence quantum yield for light-emitting diodes. Chem Commun (Camb) 2022; 58:4235-4238. [DOI: 10.1039/d2cc00051b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We reported a novel strategy for the preparation of CsPbBr3 perovskite quantum dots by polyacrylic acid-b-polystyrene ligands, which exhibited high stability and photoluminescence quantum yields. The fabricated white light-emitting diodesexhibited...
Collapse
|
8
|
Investigation of Threshold Carrier Densities in the Optically Pumped Amplified Spontaneous Emission of Formamidinium Lead Bromide Perovskite Using Different Excitation Wavelengths. PHOTONICS 2021. [DOI: 10.3390/photonics9010004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The high crystal quality of formamidium lead bromide perovskite (CH(NH2)2PbBr3 = FAPbBr3) was infiltrated in a mesoporous TiO2 network. Then, high-quality FAPbBr3 films were evaluated as active lasing media, and were irradiated with a picosecond pulsed laser to demonstrate amplified spontaneous emission (ASE), which is a better benchmark of its intrinsic suitability for gain applications. The behavior was investigated using two excitation wavelengths of 440 nm and 500 nm. Due to the wavelength-dependent absorbance spectrum and the presence of a surface adsorption layer that could be reduced using the shorter 440 nm wavelength, the ASE power dependence was strongly reliant on the excitation wavelength. The ASE state was achieved with a threshold energy density of ~200 µJ/cm2 under 440 nm excitation. Excitation at 500 nm, on the other hand, needed a higher threshold energy density of ~255 µJ/cm2. The ASE threshold carrier density, on the other hand, was expected to be ~4.5 × 1018 cm−3 for both excitations. A redshift of the ASE peak was detected as bandgap renormalization (BGR), and a BGR constant of ~5–7 × 10−9 eV cm was obtained.
Collapse
|
9
|
Qaid SMH, Ghaithan HM, AlHarbi KK, Al-Asbahi BA, Aldwayyan AS. Enhancement of Light Amplification of CsPbBr 3 Perovskite Quantum Dot Films via Surface Encapsulation by PMMA Polymer. Polymers (Basel) 2021; 13:2574. [PMID: 34372176 PMCID: PMC8348694 DOI: 10.3390/polym13152574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Photonic devices based on perovskite materials are considered promising alternatives for a wide range of these devices in the future because of their broad bandgaps and ability to contribute to light amplification. The current study investigates the possibility of improving the light amplification characteristics of CsPbBr3 perovskite quantum dot (PQD) films using the surface encapsulation technique. To further amplify emission within a perovskite layer, CsPbBr3 PQD films were sandwiched between two transparent layers of poly(methyl methacrylate) (PMMA) to create a highly flexible PMMA/PQD/PMMA waveguide film configuration. The prepared perovskite film, primed with a polymer layer coating, shows a marked improvement in both emission efficiency and amplified spontaneous emission (ASE)/laser threshold compared with bare perovskite films on glass substrates. Additionally, significantly improved photoluminescence (PL) and long decay lifetime were observed. Consequently, under pulse pumping in a picosecond duration, ASE with a reduction in ASE threshold of ~1.2 and 1.4 times the optical pumping threshold was observed for PQDs of films whose upper face was encapsulated and embedded within a cavity comprising two PMMA reflectors, respectively. Moreover, the exposure stability under laser pumping was greatly improved after adding the polymer coating to the top face of the perovskite film. Finally, this process improved the emission and PL in addition to enhancements in exposure stability. These results were ascribed in part to the passivation of defects in the perovskite top surface, accounting for the higher PL intensity, the slower PL relaxation, and for about 14 % of the ASE threshold decrease.
Collapse
Affiliation(s)
- Saif M. H. Qaid
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.G.); (K.K.A.); (B.A.A.-A.); (A.S.A.)
- Department of Physics, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Hamid M. Ghaithan
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.G.); (K.K.A.); (B.A.A.-A.); (A.S.A.)
| | - Khulod K. AlHarbi
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.G.); (K.K.A.); (B.A.A.-A.); (A.S.A.)
| | - Bandar Ali Al-Asbahi
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.G.); (K.K.A.); (B.A.A.-A.); (A.S.A.)
- Department of Physics, Faculty of Science, Sana’a University, Sana’a 12544, Yemen
| | - Abdullah S. Aldwayyan
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (H.M.G.); (K.K.A.); (B.A.A.-A.); (A.S.A.)
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center at Riyadh, Riyadh 11451, Saudi Arabia
| |
Collapse
|
10
|
Qaid SMH, Ghaithan HM, Al-Asbahi BA, Aldwayyan AS. Achieving Optical Gain of the CsPbBr 3 Perovskite Quantum Dots and Influence of the Variable Stripe Length Method. ACS OMEGA 2021; 6:5297-5309. [PMID: 33681570 PMCID: PMC7931209 DOI: 10.1021/acsomega.0c05414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/05/2021] [Indexed: 05/27/2023]
Abstract
High-quality inorganic cesium lead halide perovskite quantum dot (CsPbBr3 PQD) thin films were successfully deposited directly from a powdered source and used as an active laser medium following the examination of their distinctive surface and structural properties. To determine the suitability of the CsPbBr3 PQDs as an active laser medium, amplified spontaneous emission (ASE) and optical gain properties were investigated under picosecond pulse excitation using the variable stripe length (VSL) method. The thin film of CsPbBr3 PQDs has exhibited a sufficient value of the optical absorption coefficient of ∼0.86 × 105 cm-1 near the band edge and a direct band gap energy E g ∼2.38 eV. The samples showed enhanced emission, and ASE was successfully recorded at a low threshold. The light emitted from the edge was observed near 2.40 and 2.33 eV for the stimulated emission (SE) and ASE regimes, respectively. The nonradiative decay contributes excitons dominant over biexcitons in the sample edge emission above the ASE threshold, making it practical for CsPbBr3 PQDs to be used as optical gain media without undergoing repeated SE processes above the threshold over long periods. A high value of the optical gain coefficient was recorded at 346 cm-1.
Collapse
Affiliation(s)
- Saif M. H. Qaid
- Department
of Physics & Astronomy, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Hamid M. Ghaithan
- Department
of Physics & Astronomy, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bandar Ali Al-Asbahi
- Department
of Physics & Astronomy, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department
of Physics, Faculty of Science, Sana’a
University, Sana’a 12544, Yemen
| | - Abdullah S. Aldwayyan
- Department
of Physics & Astronomy, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
- King
Abdullah Institute for Nanotechnology, King
Saud University, Riyadh 11451, Saudi Arabia
- K.A.
CARE Energy Research and Innovation Center at Riyadh, Riyadh 11451, Saudi Arabia
| |
Collapse
|
11
|
Qaid SMH, Ghaithan HM, Al-Asbahi BA, Aldwayyan AS. Achieving Optical Gain of the CsPbBr 3 Perovskite Quantum Dots and Influence of the Variable Stripe Length Method. ACS OMEGA 2021; 6:5297-5309. [PMID: 33681570 DOI: 10.1021/acsomega.0c05414/suppl_file/ao0c05414_si_001.pdf] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/05/2021] [Indexed: 05/20/2023]
Abstract
High-quality inorganic cesium lead halide perovskite quantum dot (CsPbBr3 PQD) thin films were successfully deposited directly from a powdered source and used as an active laser medium following the examination of their distinctive surface and structural properties. To determine the suitability of the CsPbBr3 PQDs as an active laser medium, amplified spontaneous emission (ASE) and optical gain properties were investigated under picosecond pulse excitation using the variable stripe length (VSL) method. The thin film of CsPbBr3 PQDs has exhibited a sufficient value of the optical absorption coefficient of ∼0.86 × 105 cm-1 near the band edge and a direct band gap energy E g ∼2.38 eV. The samples showed enhanced emission, and ASE was successfully recorded at a low threshold. The light emitted from the edge was observed near 2.40 and 2.33 eV for the stimulated emission (SE) and ASE regimes, respectively. The nonradiative decay contributes excitons dominant over biexcitons in the sample edge emission above the ASE threshold, making it practical for CsPbBr3 PQDs to be used as optical gain media without undergoing repeated SE processes above the threshold over long periods. A high value of the optical gain coefficient was recorded at 346 cm-1.
Collapse
Affiliation(s)
- Saif M H Qaid
- Department of Physics & Astronomy, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Physics, Faculty of Science, Ibb University, Ibb 70270, Yemen
| | - Hamid M Ghaithan
- Department of Physics & Astronomy, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bandar Ali Al-Asbahi
- Department of Physics & Astronomy, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Physics, Faculty of Science, Sana'a University, Sana'a 12544, Yemen
| | - Abdullah S Aldwayyan
- Department of Physics & Astronomy, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center at Riyadh, Riyadh 11451, Saudi Arabia
| |
Collapse
|
12
|
Qaid SMH, Ghaithan HM, Al-Asbahi BA, Aldwayyan AS. Single-Source Thermal Evaporation Growth and the Tuning Surface Passivation Layer Thickness Effect in Enhanced Amplified Spontaneous Emission Properties of CsPb(Br 0.5Cl 0.5) 3 Perovskite Films. Polymers (Basel) 2020; 12:polym12122953. [PMID: 33322038 PMCID: PMC7764332 DOI: 10.3390/polym12122953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 11/16/2022] Open
Abstract
High-quality inorganic cesium lead halide perovskite CsPb(Br0.5Cl0.5)3 thin films were successfully achieved through evaporation of the precursors and deposition sequentially by a single-source thermal evaporation system. The different melting points of the precursors were enabled us to evaporate precursors one by one in one trip. The resulting films through its fabrication were smooth and pinhole-free. Furthermore, this technique enabled complete surface coverage by high-quality perovskite crystallization and more moisture stability oppositely of that produce by solution-processed. Then the perovskite films were encapsulated by evaporated a polymethyl methacrylate (PMMA) polymer as a specialized surface passivation approach with various thicknesses. The blue emission, high photoluminescence quantum yield (PLQY), stable, and low threshold of amplified spontaneous emission (ASE) properties of CsPb(Br0.5Cl0.5)3 films in the bulk structure at room temperature were achieved. The effects of the surface-passivation layer and its thickness on the optical response were examined. Detailed analysis of the dependence of ASE properties on the surface passivation layer thickness was performed, and it was determined this achieves performance optimization. The ASE characteristics of bare perovskite thin film were influenced by the incorporation of the PMMA with various thicknesses. The improvement to the surface layer of perovskite thin films compared to that of the bare perovskite thin film was attributed to the combination of thermal evaporation deposition and surface encapsulation. The best results were achieved when using a low PMMA thickness up to 100 nm and reducing the ASE threshold by ~11 μJ/cm2 when compared with free-encapsulation and by ~13 μJ/cm2 when encapsulation occurs at 200 nm or thicker. Compared to the bare CsPb(Br0.5Cl0.5)3, ASE reduced 1.1 times when the PMMA thickness was 100 nm.
Collapse
Affiliation(s)
- Saif M. H. Qaid
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (B.A.A.-A.); (A.S.A.)
- Department of Physics, Faculty of Science, Ibb University, Ibb 70270, Yemen
- Correspondence: (S.M.H.Q.); (H.M.G.)
| | - Hamid M. Ghaithan
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (B.A.A.-A.); (A.S.A.)
- Correspondence: (S.M.H.Q.); (H.M.G.)
| | - Bandar Ali Al-Asbahi
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (B.A.A.-A.); (A.S.A.)
- Department of Physics, Faculty of Science, Sana’a University, Sana’a 12544, Yemen
| | - Abdullah S. Aldwayyan
- Physics and Astronomy Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (B.A.A.-A.); (A.S.A.)
- King Abdullah Institute for Nanotechnology, King Saud University, Riyadh 11451, Saudi Arabia
- K.A. CARE Energy Research and Innovation Center at Riyadh, Riyadh 11451, Saudi Arabia
| |
Collapse
|
13
|
Ultra-Stable Polycrystalline CsPbBr 3 Perovskite-Polymer Composite Thin Disk for Light-Emitting Applications. NANOMATERIALS 2020; 10:nano10122382. [PMID: 33260437 PMCID: PMC7759973 DOI: 10.3390/nano10122382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Organic–inorganic halide organometal perovskites have demonstrated very promising performance in optoelectronic applications, but their relatively poor chemical and colloidal stability hampers the further improvement of devices based on these materials. Perovskite material engineering is crucial for achieving high photoluminescence quantum yields (PLQYs) and long stability. Herein, these goals are attained by incorporating bulk-structure CsPbBr3, which prevents colloidal degradation, into polymethyl methacrylate (PMMA) polymer in thin-disk form. This technology can potentially realize future disk lasers with no optical and structural contributions from the polymer. The polycrystalline CsPbBr3 perovskite particles were simply obtained by using a mechanical processing technique. The CsPbBr3 was then incorporated into the PMMA polymer using a solution blending method. The polymer enhanced the PLQYs by removing the surface trap states and increasing the water resistance and stability under ambient conditions. In our experimental investigation, the CsPbBr3/PMMA composites were extraordinarily stable and remained strongly luminescent after water immersion for three months and air exposure for over one year, maintaining 80% of their initial photoluminescence intensity. The CsPbBr3/PMMA thin disk produced amplified spontaneous emission for a long time in air and for more than two weeks in water.
Collapse
|
14
|
Protonation-Induced Enhanced Optical-Light Photochromic Properties of an Inorganic-Organic Phosphomolybdic Acid/Polyaniline Hybrid Thin Film. NANOMATERIALS 2020; 10:nano10091839. [PMID: 32942574 PMCID: PMC7559633 DOI: 10.3390/nano10091839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/07/2020] [Accepted: 09/12/2020] [Indexed: 11/16/2022]
Abstract
A phosphomolybdic acid/polyaniline (PMoA/PANI) optical-light photochromic inorganic/organic hybrid thin film was successfully synthesized by protonation between the the multiprotonic acid phosphomolybdic acid (H3PO4·12MoO3) and the conductive polymer polyaniline. The stable Keggin-type structure of PMoA was maintained throughout the process. Protonation and proton transfer successfully transformed the quinone structure of eigenstate PANI into the benzene structure of single-polarized PANI in the PMoA/PANI hybridized thin film, and proton transfer transformed the benzene structure of single-polarized PANI back to the quinone structure of eigenstate PANI in the PMoA/PANI hybrid thin film, as verified by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The average distribution of PMoA/PANI was observed by atom force microscopy (AFM). Interestingly, protonation of PMoA caused PANI to trigger transformation of the quinone structure into the single-polarized benzene structure, which enhanced the electron delocalization ability and vastly enhanced the maximum light absorption of the PMoA/PANI hybrid thin film as confirmed by density functional theory (DFT), electrochemistry, and ultraviolet-visible spectroscopy (UV-Vis) studies. Under optical-light illumination, the pale-yellow PMoA/PANI hybrid thin film gradually turned deep blue, thus demonstrating a photochromic response, and reversible photochromism was also observed in the presence of hydrogen peroxide (H2O2) or oxygen (O2). After 40 min of optical-light illumination, 36% of the Mo5+ species in PMoA was photoreduced via a protonation-induced proton transfer mechanism, and this proton transfer resulted in a structural change of PANI, as observed by XPS, generating a dominant structure with high maximum light absorption of 3.46, when compared with the literature reports.
Collapse
|