1
|
Li TT, Zhang X, Wang Y, Zhang X, Ren H, Shiu BC, Lou CW. Synthesis and Study of a Metal-Organic Framework-based Sulfite Fluorescence Sensor Modified with Urushiol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14441-14450. [PMID: 37747810 DOI: 10.1021/acs.langmuir.3c02006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Sulfites can pollute the environment and pose a great risk to human health in daily life, so there is an urgent need to develop efficient and lightweight sulfite detection materials. In this study, metal-organic framework-5-NH2/urushiol/PVP nanofiber composite films were prepared by an electrospinning technique for the fluorescence detection of sulfites. The results showed that the composite film could resist sulfuric acid corrosion at a concentration of 80% and inactivate Escherichia coli and Staphylococcus aureus at a concentration of 99%, and its maximum tensile strength was increased from the initial 2.753 to 4.145 N. The composite film was sensitive and specific for the fluorescence detection of sulfite.
Collapse
Affiliation(s)
- Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
| | - Xiaoyang Zhang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yanting Wang
- College of Textiles, Zhongyuan University of Technology, Zhengzhou, Henan 450007, PR China
| | - Xuefei Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Haitao Ren
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Tianjin and Education Ministry Key Laboratory of Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, China
| | - Bing-Chiuan Shiu
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
| |
Collapse
|
2
|
Li J, Li TT, Zhang Y, Shiu BC, Lin JH, Lou CW, Liu L. A two-step strategy to deposit a hydroxyapatite coating on polydopamine-coated polymer fibers. Biomed Mater 2022; 18. [PMID: 36576095 DOI: 10.1088/1748-605x/aca85a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/02/2022] [Indexed: 12/03/2022]
Abstract
As the main inorganic component of human bones and teeth, hydroxyapatite (HA), with excellent bioactivity and biocompatibility, shows great potential in the bone tissue engineering field. Marine mussel-inspired polydopamine (PDA) possesses unique functional groups and thus can absorb the calcium ions from extracellular fluid, thereby triggering the precipitation of HA. This study is based on a two-step strategy. Using the chemical activity of PDA, polyvinyl alcohol/polylactic acid (PVA/PLA) braids were coated with a PDA layer that served as a template for the electrochemical deposition of a HA layer. The test results indicate that the resulting HA crystals were assembled on the polymer fibers in an urchin-like mannerwith a stratified structure. Subsequently, the HA/PDA-PVA/PLA braided bone scaffolds were immersed in simulated body fluid for ten days, after which the bone scaffolds were found to be completely coated with HA, indicating a good biomineralization capability. Cell activity of HA/PDA-PVA/PLA scaffolded by dopamine-assisted electrodeposition was 178.8% than that of PVA/PLA braids. This HA coating layer inspired by biochemical strategies may be useful in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Jiaxin Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Ting-Ting Li
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China.,Tianjin and Ministry of Education Key Laboratory for Advanced Textile Composite Materials, Tiangong University, Tianjin 300387, People's Republic of China
| | - Ying Zhang
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Bing-Chiuan Shiu
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, People's Republic of China
| | - Jia-Horng Lin
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China.,Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan.,School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan.,Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Ching-Wen Lou
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China.,Advanced Medical Care and Protection Technology Research Center, College of Textile and Clothing, Qingdao University, Qingdao 266071, People's Republic of China.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
| | - Liyan Liu
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| |
Collapse
|
3
|
Park J, Jin SM, Mishra AK, Lim JA, Lee E. Photo-Curable Lacquer Sap Resin Based on Urushiol-Mimicking, Tyrosine-Containing Additive. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10010-10021. [PMID: 35938414 DOI: 10.1021/acs.langmuir.2c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Oriental lacquer sap is attracting considerable attention as a renewable and eco-friendly natural resin with high durability, heat resistance, insulation, insect repellency, and antiseptic and antibacterial properties. However, to ensure excellent coating performance, it is necessary to improve the drying/curing process of lacquer sap with a time-consuming drying time at high humidity [relative humidity (RH), 70-90%] and ambient temperature (20-30 °C). Drawing on an understanding of the polymerization mechanism of urushiol, the main component of the lacquer sap consisted of a water-in-oil (W/O) emulsion, and this study presents an eco-friendly additive that mimics the structure-function of urushiol composed of a polar catechol head group and a nonpolar hydrocarbon tail. A photo-curable lacquer sap was thus developed by adding a tyrosine amino acid-based lipid agent (denoted as Y-ADDA), which allows faster and more effective drying/curing at lower humidity while maintaining the nature-derived properties of lacquer sap. Y-ADDA easily coassembles with urushiol in the W/O emulsion droplets, thereby significantly accelerating the formation of a polymer network along with urushiol during water evaporation leading to fast drying/curing under ultraviolet (UV) light irradiation at low humidity (∼50% RH). The UV-cured lacquer sap resins showed higher performance in terms of film processing and physicochemical properties compared with that of the lacquer containing only tyrosine amino acids without aliphatic tail conjugation, N-(9-fluorenylmethoxycarbonyl)-O-tert-butyl-l-tyrosine Fmoc-Tyr(tBu)-OH. Furthermore, the drying and curing times, film morphology, transmittance, hardness, and adhesion strength of the UV-cured lacquer were markedly superior compared to those of shellac, a general eco-friendly fast-drying primer. The study provides useful strategies and insights to promote the industrial application of lacquer sap resins by employing biocompatible nanoagents developed with an understanding of the curing mechanism of natural resins and from the viewpoint of green and sustainable chemistry perspective.
Collapse
Affiliation(s)
- Jiwon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seon-Mi Jin
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Avnish Kumar Mishra
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jung Ah Lim
- Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
4
|
Shen C, Yang Z, Rao J, Wu J, Sun C, Sun C, Wu D, Chen K. Chlorogenic acid-loaded sandwich-structured nanofibrous film developed by solution blow spinning: Characterization, release behavior and antimicrobial activity. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Fan Q, Wu H, Kong Q. Superhydrophilic PLGA-Graft-PVP/PC Nanofiber Membranes for the Prevention of Epidural Adhesion. Int J Nanomedicine 2022; 17:1423-1435. [PMID: 35369033 PMCID: PMC8964670 DOI: 10.2147/ijn.s356250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/15/2022] [Indexed: 12/05/2022] Open
Abstract
Background The frequent occurrence of failed back surgery syndrome (FBSS) seriously affects the quality of life of postoperative lumbar patients. Epidural adhesion is the major factor in FBSS. Purpose A safe and effective antiadhesion material is urgently needed. Methods A superhydrophilic PLGA-g-PVP/PC nanofiber membrane (NFm) was prepared by electrospinning. FTIR was performed to identify its successful synthesis. Scanning electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and water contact angle measurement were performed. CCK-8 assays were performed in primary rabbit fibroblasts (PRFs) and RAW264.7 cells to explore the cytotoxicity of PLGA-g-PVP/PC NFm. Calcein-AM/PI staining was used to measure the adhesion status in PRFs. ELISA was performed to measure the concentrations of TNF-α and IL-10 in RAW264.7 cells. In addition, the anti-epidural adhesion efficacy of the PLGA-g-PVP/PC NFm was determined in a rabbit model of lumbar laminectomy. Results The PLGA-g-PVP/PC NFm exhibited ultrastrong hydrophilicity and an appropriate degradation rate. Based on the results of the CCK-8 assays, PLGA-g-PVP/PC NFm had no cytotoxicity to PRFs and RAW264.7 cells. Calcein-AM/PI staining showed that PLGA-g-PVP/PC NFm could inhibit PRF adhesion. ELISAs showed that PLGA-g-PVP/PC NFm could attenuate lipopolysaccharide-induced macrophage activation. In vivo experiments further confirmed the favorable anti-epidural adhesion effect of PLGA-g-PVP/PC NFm and the lack of a strong inflammatory response. Conclusion In this study, PLGA-g-PVP/PC NFm was developed successfully to provide a safe and effective physical barrier for preventing epidural adhesion. PLGA-g-PVP/PC NFm provides a promising strategy for preventing postoperative adhesion and has potential for clinical translation.
Collapse
Affiliation(s)
- Qingxin Fan
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Hao Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, Dalian, People’s Republic of China
| | - Qingquan Kong
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Correspondence: Qingquan Kong, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, People’s Republic of China, Email
| |
Collapse
|
6
|
Oh HJ, Hwang JH, Park M, Kim SJ, Lee J, Lim HS, Lee SS, Lim JA, Lee E. Nano-emulsification of oriental lacquer sap by ultrasonic wave propagation: Improvement of thin-film characteristics as a natural resin. ULTRASONICS SONOCHEMISTRY 2021; 73:105545. [PMID: 33836371 PMCID: PMC8056267 DOI: 10.1016/j.ultsonch.2021.105545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Lacquer sap has received much attention as a traditional natural resin because it is a renewable and eco-friendly biopolymer resource unlike artificial coating materials. However, strict drying conditions and long drying times of lacquer sap should be modified to expand its applications. This study presents the first attempt to investigate the effect of different amplitudes of ultrasonic waves on the lacquer sap composed of water-in-oil (W/O) emulsion droplets and the mechanical properties of the resultant film by solvent evaporation. Acoustically induced cavitation via batch ultrasonication facilitates the generation of submicron-sized W/O emulsion. The drying time of sonicated lacquer sap was noticeably shortened as the amplitude of acoustic power increased. Interestingly, the transparency of the film cast from lacquer sap consisting of the smallest emulsion droplets increased significantly, weakening the degree of colour change from caramel-like yellow to dark brown as polymerisation progressed. These are attributed to the effective and frequent contact of laccase enzyme with urushiol at the increased interfacial area of nano-emulsified W/O droplets pulverised by ultrasonic waves. The quinone radical-generation in the interface layer and its transfer to the urushiol oil phase through water-insoluble glycoprotein emulsifier are greatly promoted, resulting in highly cross-linked, dense three-dimensional polymer networks, which also increased the lacquer film hardness after drying. As the emulsion droplet size decreased, the mutual interaction between the catechol moiety of urushiol and the substrates increased, resulting in improved adhesion. The nano-emulsification of the lacquer sap by ultrasonic waves can be used in a simple, effective, and eco-friendly way to shorten the drying time and improve the film characteristics of natural resins. This approach could pave the way for its wide range of applications in industrial fields, taking into account green and sustainable chemistry.
Collapse
Affiliation(s)
- Hyo-Jun Oh
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jun Ho Hwang
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Minju Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Soo Jin Kim
- Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jihoo Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ho Sun Lim
- Department of Chemical and Biological Engineering, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Sang-Soo Lee
- Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jung Ah Lim
- Photo-Electronic Hybrids Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| |
Collapse
|
7
|
Wu K, Shiu BC, Zhang D, Shen Z, Liu M, Lin Q. Preparation of Nanoscale Urushiol/PAN Films to Evaluate Their Acid Resistance and Protection of Functional PVP Films. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:957. [PMID: 33918605 PMCID: PMC8069575 DOI: 10.3390/nano11040957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 01/20/2023]
Abstract
Different amounts of urushiol were added to a fixed amount of polyacrylonitrile (PAN) to make nanoscale urushiol/PAN films by the electrospinning method. Electrospinning solutions were prepared by using dimethylformamide (DMF) as the solvent. Nanoscale urushiol/PAN films and conductive Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)(PEDOT:PSS)/polyvinyl pyrrolidone (PVP) films were prepared by electrospinning. In order to prepare an electrospun sandwich nanoscale film, urushiol/PAN films were deposited as both the top and bottom layers and PEDOT:PSS/PVP film as the inner layer. When the PAN to urushiol ratio was 7:5, the fiber diameter ranged between 150 nm and 200 nm. The single-layer urushiol/PAN film could not be etched after being immersed into 60%, 80%, and 100% sulfuric acid (H2SO4) for 30 min, which indicated the improved acid resistance of the PAN film. The urushiol/PAN film was used to fabricate the sandwich nanoscale films. When the sandwich film was immersed into 80% and 100% H2SO4 solutions for 30 min, the structure remained intact, and the conductive PVP film retained its original properties. Thus, the working environment tolerability of the functional PVP film was increased.
Collapse
Affiliation(s)
- Kunlin Wu
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Ocean College, Minjiang University, Fuzhou 350108, China; (K.W.); (B.-C.S.); (D.Z.); (Z.S.)
- College of Environment and Resources, Fuzhou University, Fuzhou 350108, China;
| | - Bing-Chiuan Shiu
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Ocean College, Minjiang University, Fuzhou 350108, China; (K.W.); (B.-C.S.); (D.Z.); (Z.S.)
| | - Ding Zhang
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Ocean College, Minjiang University, Fuzhou 350108, China; (K.W.); (B.-C.S.); (D.Z.); (Z.S.)
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhenhao Shen
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Ocean College, Minjiang University, Fuzhou 350108, China; (K.W.); (B.-C.S.); (D.Z.); (Z.S.)
| | - Minghua Liu
- College of Environment and Resources, Fuzhou University, Fuzhou 350108, China;
| | - Qi Lin
- Fujian Engineering and Research Center of New Chinese Lacquer Materials, Ocean College, Minjiang University, Fuzhou 350108, China; (K.W.); (B.-C.S.); (D.Z.); (Z.S.)
| |
Collapse
|