1
|
Brugnoli M, Carvalho JPF, Arena MP, Oliveira H, Vilela C, Freire CSR, Gullo M. Co-cultivation of Komagataeibacter sp. and Lacticaseibacillus sp. strains to produce bacterial nanocellulose-hyaluronic acid nanocomposite membranes for skin wound healing applications. Int J Biol Macromol 2025; 299:140208. [PMID: 39848389 DOI: 10.1016/j.ijbiomac.2025.140208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Inspired by natural microbial cooperation, a co-culture approach was used to synthesize bacterial nanocellulose (BNC)-based nanocomposites for potential wound healing applications. By co-culturing either Komagataeibacter xylinus (K1G4) or the never tested strain K. rhaeticus (K2G46) with the hyaluronic acid (HA)-producer Lacticaseibacillus casei UMCC 2535, two BNC-HA nanocomposites were obtained (C1-K1 and C2-K2). The membranes showed a HA content of 0.49 ± 0.05 mg (C1-K1) and 1.40 ± 0.07 mg (C2-K2), and both revealing a nearly complete release of HA after 1 h in PBS. Compared to pure BNC membranes, the nanocomposites showed enhanced properties, including higher crystallinity (K1G4 = 84.6 %; K2G46 = 76.5 %; C1-K1 = 89.1 %; C2-K2 = 88.1 %), and Young's modulus (K1G4 = 3.38 ± 0.56 GPa; K2G46 = 2.22 ± 0.65 GPa; C1-K1 = 10.00 ± 1.32 GPa; C2-K2 = 7.90 ± 1.54 GPa). Additionally, both BNC-HA membranes exhibited increased moisture uptake (K1G4 = 9.06 ± 0.47 %; K2G46 = 9.27 ± 1.33 %; C1-K1 = 13.65 ± 0.53 %; C2-K2 = 16.26 ± 1.05 %) and water absorption (K1G4 = 82.18 ± 5.25 %; K2G46 = 86.54 ± 7.86 %; C1-K1 = 160.04 ± 9.33 %; C2-K2 = 144.42 ± 13.86 %) capacity. Moreover, they were non-cytotoxic towards human keratinocyte (HaCaT) cells, with >90 % cell viability for up to 72 h. The in vitro scratch assays showed a complete wound closure within 48 h for cells exposed to BNC-HA membranes. These findings underscore the potential of co-culturing system to develop BNC-HA nanocomposites for wound healing applications.
Collapse
Affiliation(s)
- M Brugnoli
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| | - J P F Carvalho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - M P Arena
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy
| | - H Oliveira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - C Vilela
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - C S R Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - M Gullo
- Unimore Microbial Culture Collection Laboratory, Department of Life Sciences, University of Modena and Reggio Emilia, 42124 Reggio Emilia, Italy.
| |
Collapse
|
2
|
Tao X, Wang Z, Ren B, Li J, Zhou T, Tan H, Niu X. High-flexible chitosan-based composite membrane with multi-layer biopolymer coatings for anti-bacterial drug delivery and wound healing. Int J Biol Macromol 2024; 279:134829. [PMID: 39208887 DOI: 10.1016/j.ijbiomac.2024.134829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Flexible chitosan-based membranes were prepared by casting/solvent evaporation method using chitosan flocks as raw material. To improve mechanical and biological properties, chitosan microspheres (CMs) were prepared and integrated to form the composite membranes. Two different anti-bacterial drugs, e.g., tetracycline hydrochloride (TH) and silver sulfadiazine (AgSD), were loaded into the CMs and composite membranes to enhance their anti-bacterial properties. Furthermore, composite membranes were alternately coated by multi-layers of oxidized alginate (OAlg) and carboxymethyl chitosan (CMCS) via the layer-by-layer self-assembly and Schiff-base cross-linking. Our results demonstrated that the microspheres and multi-layer coatings could improve the swelling, water vapor transmission and hydrophilicity of the composite membranes. The chitosan microspheres and multi-layer coatings increased the tensile strength and decreased the elongation at the break of the membranes. Our composite membrane had better mechanical properties, slow drug release, anti-bacterial properties, which could promote cell proliferation. This composite membrane has great application potential in inhibiting bacterial infection and promoting wound regeneration.
Collapse
Affiliation(s)
- Xinwei Tao
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zijia Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bowen Ren
- Zhejiang Huafon New Materials Co., Ltd, Wenzhou 325200, China
| | - Jianliang Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Tianle Zhou
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huaping Tan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xiaohong Niu
- Department of Luoli, Nanjing Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing 210014, China.
| |
Collapse
|
3
|
Silva ACQ, Mendes M, Vitorino C, Montejo U, Alonso-Varona A, Silvestre AJD, Vilela C, Freire CSR. Trilayered nanocellulose-based patches loaded with acyclovir and hyaluronic acid for the treatment of herpetic lesions. Int J Biol Macromol 2024; 277:133843. [PMID: 39032882 DOI: 10.1016/j.ijbiomac.2024.133843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
This study focuses on the preparation of layered bacterial nanocellulose (BNC) patches for drug delivery and wound healing in the context of herpes labialis. Nanostructured patches were prepared by selective aqueous diffusion of acyclovir (ACV, antiviral drug), hyaluronic acid (HA, skin healing promoter), and glycerol (GLY, plasticizer and humectant) in the BNC network, followed by assembly into trilayered patches with ACV on the central layer of the patch (ACVT) or divided between two layers (ACVH), to modulate drug release. Both patches showed good layers' adhesion and thermal stability (125 °C), UV barrier properties, good static (Young's modulus up to 0.9 GPa (dry) and 0.7 GPa (wet)) and dynamic mechanical performance, and adhesion strength (21 kPa) comparable to or higher than other materials and commercial adhesives for wound healing. In vitro drug dissolution showed faster ACV release from the ACVH patch (77 ± 5 %, 10 min) than from the ACVT one (50 ± 7 %), suggesting efficient drug delivery. ACVH closely resembled a commercial cream formulation in terms of release and permeation profiles. The patches were non-cytotoxic toward L929 fibroblasts, promoting cell adhesion and wound closure (in vitro). These results underscore the dual-action potential of the layered patches for managing herpetic lesions.
Collapse
Affiliation(s)
- Ana C Q Silva
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Mendes
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Unai Montejo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Ana Alonso-Varona
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa 48940, Spain
| | - Armando J D Silvestre
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Vilela
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carmen S R Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Asadzadeh F, Ghorbanzadeh S, Poursattar Marjani A, Gholami R, Asadzadeh F, Lotfollahi L. Assessing polylactic acid nanofibers with cellulose and chitosan nanocapsules loaded with chamomile extract for treating gram-negative infections. Sci Rep 2024; 14:22336. [PMID: 39333220 PMCID: PMC11437081 DOI: 10.1038/s41598-024-72398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
This study presents the development and characterization of a novel nanocomposite wound dressing material based on polylactic acid (PLA) nanofibers incorporating chitosan nanocapsules loaded with chamomile extract and cellulose nanoparticles. The nanofibers were fabricated using a three-step synthesis and electrospinning techniques, resulting in uniform, bead-free fibers with an average diameter of 186 ± 56 nm. Fourier-transform infrared spectroscopy confirmed the successful incorporation of all components, while tensile strength tests demonstrated improved mechanical properties by adding nanoparticles. Water contact angle measurements revealed enhanced surface wettability of the PLA-Cellulose-Chitosan complex compared to pure PLA nanofibers. In vitro biocompatibility assessments using MTT assays showed excellent cell viability and proliferation, with the optimized composite exhibiting the best performance. Scanning electron microscopy imaging confirmed robust cell adhesion and interaction with the nanofibers. The nanocomposite demonstrated significant antimicrobial activity against Escherichia coli, with a 20 mm inhibition zone observed for chamomile extract-loaded samples. Additionally, the material showed superior hemostatic ability compared to commercial gauze and high hemocompatibility. These comprehensive results indicate that the developed nanocomposite is a promising candidate for advanced wound management applications, offering a multifunctional approach to wound healing by combining antimicrobial activity, cell compatibility, and hemostatic properties.
Collapse
Affiliation(s)
- Fatemeh Asadzadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Sadegh Ghorbanzadeh
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, 116024, China
- School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | | | - Reza Gholami
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, IUST, Tehran, Iran
| | - Faezeh Asadzadeh
- Haj Muhammad Talaaie Scientific Research Institute, Nanotechnology Research Institute, Salmas, Iran
| | - Lida Lotfollahi
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
5
|
Kim H, Dutta SD, Randhawa A, Patil TV, Ganguly K, Acharya R, Lee J, Park H, Lim KT. Recent advances and biomedical application of 3D printed nanocellulose-based adhesive hydrogels: A review. Int J Biol Macromol 2024; 264:130732. [PMID: 38479658 DOI: 10.1016/j.ijbiomac.2024.130732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Nanocellulose-based tissue adhesives show promise for achieving rapid hemostasis and effective wound healing. Conventional methods, such as sutures and staples, have limitations, prompting the exploration of bioadhesives for direct wound adhesion and minimal tissue damage. Nanocellulose, a hydrolysis product of cellulose, exhibits superior biocompatibility and multifunctional properties, gaining interest as a base material for bioadhesive development. This study explores the potential of nanocellulose-based adhesives for hemostasis and wound healing using 3D printing techniques. Nanocellulose enables the creation of biodegradable adhesives with minimal adverse effects and opens avenues for advanced wound healing and complex tissue regeneration, such as skin, blood vessels, lungs, cartilage, and muscle. This study reviews recent trends in various nanocellulose-based 3D printed hydrogel patches for tissue engineering applications. The review also introduces various types of nanocellulose and their synthesis, surface modification, and bioadhesive fabrication techniques via 3D printing for smart wound healing.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Aayushi Randhawa
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Rumi Acharya
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Jieun Lee
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Hyeonseo Park
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Kangwon University, Chuncheon 24341, Gangwon-do, Republic of Korea; Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea; Institute of Forest Science, Kangwon National University, Chuncheon 24341, Gangwon-do, Republic of Korea.
| |
Collapse
|
6
|
Moraru A, Dima ȘO, Tritean N, Oprița EI, Prelipcean AM, Trică B, Oancea A, Moraru I, Constantinescu-Aruxandei D, Oancea F. Bioactive-Loaded Hydrogels Based on Bacterial Nanocellulose, Chitosan, and Poloxamer for Rebalancing Vaginal Microbiota. Pharmaceuticals (Basel) 2023; 16:1671. [PMID: 38139798 PMCID: PMC10748236 DOI: 10.3390/ph16121671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
Biocompatible drug-delivery systems for soft tissue applications are of high interest for the medical and pharmaceutical fields. The subject of this research is the development of hydrogels loaded with bioactive compounds (inulin, thyme essential oil, hydro-glycero-alcoholic extract of Vitis vinifera, Opuntia ficus-indica powder, lactic acid, citric acid) in order to support the vaginal microbiota homeostasis. The nanofibrillar phyto-hydrogel systems developed using the biocompatible polymers chitosan (CS), never-dried bacterial nanocellulose (NDBNC), and Poloxamer 407 (PX) incorporated the water-soluble bioactive components in the NDBNC hydrophilic fraction and the hydrophobic components in the hydrophobic core of the PX fraction. Two NDBNC-PX hydrogels and one NDBNC-PX-CS hydrogel were structurally and physical-chemically characterized using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and rheology. The hydrogels were also evaluated in terms of thermo-responsive properties, mucoadhesion, biocompatibility, and prebiotic and antimicrobial effects. The mucin binding efficiency of hydrogel base systems was determined by the periodic acid/Schiff base (PAS) assay. Biocompatibility of hydrogel systems was determined by the MTT test using mouse fibroblasts. The prebiotic activity was determined using the probiotic strains Limosilactobacillus reuteri and Lactiplantibacillus plantarum subsp. plantarum. Antimicrobial activity was also assessed using relevant microbial strains, respectively, E. coli and C. albicans. TEM evidenced PX micelles of around 20 nm on NDBNC nanofibrils. The FTIR and XRD analyses revealed that the binary hydrogels are dominated by PX signals, and that the ternary hydrogel is dominated by CS, with additional particular fingerprints for the biocompounds and the hydrogel interaction with mucin. Rheology evidenced the gel transition temperatures of 18-22 °C for the binary hydrogels with thixotropic behavior and, respectively, no gel transition, with rheopectic behavior for the ternary hydrogel. The adhesion energies of the binary and ternary hydrogels were evaluated to be around 1.2 J/m2 and 9.1 J/m2, respectively. The hydrogels exhibited a high degree of biocompatibility, with the potential to support cell proliferation and also to promote the growth of lactobacilli. The hydrogel systems also presented significant antimicrobial and antibiofilm activity.
Collapse
Affiliation(s)
- Angela Moraru
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, Bd. Mărăști Nr. 59, Sector 1, 011464 Bucharest, Romania;
- S.C. Laboratoarele Medica Srl, Strada Frasinului Nr. 11, 075100 Otopeni, Romania;
| | - Ștefan-Ovidiu Dima
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (B.T.)
| | - Naomi Tritean
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (B.T.)
- Faculty of Biology, University of Bucharest, Splaiul Independentei Nr. 91-95, Sector 5, 050095 Bucharest, Romania
| | - Elena-Iulia Oprița
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Splaiul Independentei Nr. 296, Sector 6, 060031 Bucharest, Romania; (E.-I.O.); (A.-M.P.); (A.O.)
| | - Ana-Maria Prelipcean
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Splaiul Independentei Nr. 296, Sector 6, 060031 Bucharest, Romania; (E.-I.O.); (A.-M.P.); (A.O.)
| | - Bogdan Trică
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (B.T.)
| | - Anca Oancea
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Splaiul Independentei Nr. 296, Sector 6, 060031 Bucharest, Romania; (E.-I.O.); (A.-M.P.); (A.O.)
| | - Ionuț Moraru
- S.C. Laboratoarele Medica Srl, Strada Frasinului Nr. 11, 075100 Otopeni, Romania;
| | - Diana Constantinescu-Aruxandei
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (B.T.)
| | - Florin Oancea
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine Bucharest, Bd. Mărăști Nr. 59, Sector 1, 011464 Bucharest, Romania;
- Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry—ICECHIM, Splaiul Independentei Nr. 202, Sector 6, 060021 Bucharest, Romania; (Ș.-O.D.); (N.T.); (B.T.)
| |
Collapse
|
7
|
Oprică GM, Panaitescu DM, Usurelu CD, Vlăsceanu GM, Stanescu PO, Lixandru BE, Vasile V, Gabor AR, Nicolae CA, Ghiurea M, Frone AN. Nanocellulose Sponges Containing Antibacterial Basil Extract. Int J Mol Sci 2023; 24:11871. [PMID: 37511630 PMCID: PMC10380770 DOI: 10.3390/ijms241411871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Nanocellulose (NC) is a valuable material in tissue engineering, wound dressing, and drug delivery, but its lack of antimicrobial activity is a major drawback for these applications. In this work, basil ethanolic extract (BE) and basil seed mucilage (BSM) were used to endow nanocellulose with antibacterial activity. NC/BE and NC/BE/BSM sponges were obtained from nanocellulose suspensions and different amounts of BE and BSM after freeze-drying. Regardless of the BE or BSM content, the sponges started to decompose at a lower temperature due to the presence of highly volatile active compounds in BE. A SEM investigation revealed an opened-cell structure and nanofibrillar morphology for all the sponges, while highly impregnated nanofibers were observed by SEM in NC/BE sponges with higher amounts of BE. A quantitative evaluation of the porous morphology by microcomputer tomography showed that the open porosity of the sponges varied between 70% and 82%, being lower in the sponges with higher BE/BSM content due to the impregnation of cellulose nanofibers with BE/BSM, which led to smaller pores. The addition of BE increased the specific compression strength of the NC/BE sponges, with a higher amount of BE having a stronger effect. A slight inhibition of S. aureus growth was observed in the NC/BE sponges with a higher amount of BE, and no effect was observed in the unmodified NC. In addition, the NC/BE sponge with the highest amount of BE and the best antibacterial effect in the series showed no cytotoxic effect and did not interfere with the normal development of the L929 cell line, similar to the unmodified NC. This work uses a simple, straightforward method to obtain highly porous nanocellulose structures containing antibacterial basil extract for use in biomedical applications.
Collapse
Affiliation(s)
- Gabriela Mădălina Oprică
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Denis Mihaela Panaitescu
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Catalina Diana Usurelu
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - George Mihai Vlăsceanu
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Paul Octavian Stanescu
- Faculty of Chemical Engineering and Biotechnology, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Brandusa Elena Lixandru
- Cantacuzino National Medical-Military Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Valentin Vasile
- Cantacuzino National Medical-Military Institute for Research and Development, 103 Spl. Independentei, 050096 Bucharest, Romania
| | - Augusta Raluca Gabor
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Cristian-Andi Nicolae
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Marius Ghiurea
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Adriana Nicoleta Frone
- National Institute for Research and Development in Chemistry and Petrochemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|
8
|
Silva ACQ, Silvestre AJD, Vilela C, Freire CSR. Cellulose and protein nanofibrils: Singular biobased nanostructures for the design of sustainable advanced materials. Front Bioeng Biotechnol 2022; 10:1059097. [PMID: 36582838 PMCID: PMC9793328 DOI: 10.3389/fbioe.2022.1059097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Polysaccharides and proteins are extensively used for the design of advanced sustainable materials. Owing to the high aspect ratio and specific surface area, ease of modification, high mechanical strength and thermal stability, renewability, and biodegradability, biopolymeric nanofibrils are gaining growing popularity amongst the catalog of nanostructures exploited in a panoply of fields. These include the nanocomposites, paper and packaging, environmental remediation, electronics, energy, and biomedical applications. In this review, recent trends on the use of cellulose and protein nanofibrils as versatile substrates for the design of high-performance nanomaterials are assessed. A concise description of the preparation methodologies and characteristics of cellulosic nanofibrils, namely nanofibrillated cellulose (NFC), bacterial nanocellulose (BNC), and protein nanofibrils is presented. Furthermore, the use of these nanofibrils in the production of sustainable materials, such as membranes, films, and patches, amongst others, as well as their major domains of application, are briefly described, with focus on the works carried out at the BioPol4Fun Research Group (Innovation in BioPolymer based Functional Materials and Bioactive Compounds) from the Portuguese associate laboratory CICECO-Aveiro Institute of Materials (University of Aveiro). The potential for partnership between both types of nanofibrils in advanced material development is also reviewed. Finally, the critical challenges and opportunities for these biobased nanostructures for the development of functional materials are addressed.
Collapse
|
9
|
Skin-adaptive film dressing with smart-release of growth factors accelerated diabetic wound healing. Int J Biol Macromol 2022; 222:2729-2743. [DOI: 10.1016/j.ijbiomac.2022.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/29/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
10
|
Freire CSR, Vilela C. Advanced Nanocellulose-Based Materials: Production, Properties, and Applications. NANOMATERIALS 2022; 12:nano12030431. [PMID: 35159776 PMCID: PMC8840358 DOI: 10.3390/nano12030431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 12/10/2022]
Abstract
Natural polymers, such as polysaccharides and proteins, are being extensively utilized as substrates to create advanced materials [...].
Collapse
|
11
|
Makhloufi N, Chougui N, Rezgui F, Benramdane E, Silvestre AJD, Freire CSR, Vilela C. Polysaccharide-based films of cactus mucilage and agar with antioxidant properties for active food packaging. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Kadir NHA, Mohammad M, Alam M, Torkashvand M, Silvaragi TGB, Gururuloo SL. Utilization of nanocellulose fibers, nanocrystalline cellulose and bacterial cellulose in biomedical and pharmaceutical applications. NANOTECHNOLOGY IN PAPER AND WOOD ENGINEERING 2022:409-470. [DOI: 10.1016/b978-0-323-85835-9.00025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
13
|
Natural Polymers-Based Materials: A Contribution to a Greener Future. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010094. [PMID: 35011326 PMCID: PMC8747056 DOI: 10.3390/molecules27010094] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 01/19/2023]
Abstract
Natural polymers have emerged as promising candidates for the sustainable development of materials in areas ranging from food packaging and biomedicine to energy storage and electronics. In tandem, there is a growing interest in the design of advanced materials devised from naturally abundant and renewable feedstocks, in alignment with the principles of Green Chemistry and the 2030 Agenda for Sustainable Development. This review aims to highlight some examples of the research efforts conducted at the Research Team BioPol4fun, Innovation in BioPolymer-based Functional Materials and Bioactive Compounds, from the Portuguese Associate Laboratory CICECO–Aveiro Institute of Materials at the University of Aveiro, regarding the exploitation of natural polymers (and derivatives thereof) for the development of distinct sustainable biobased materials. In particular, focus will be given to the use of polysaccharides (cellulose, chitosan, pullulan, hyaluronic acid, fucoidan, alginate, and agar) and proteins (lysozyme and gelatin) for the assembly of composites, coatings, films, membranes, patches, nanosystems, and microneedles using environmentally friendly strategies, and to address their main domains of application.
Collapse
|
14
|
Shen S, Chen X, Shen Z, Chen H. Marine Polysaccharides for Wound Dressings Application: An Overview. Pharmaceutics 2021; 13:1666. [PMID: 34683959 PMCID: PMC8541487 DOI: 10.3390/pharmaceutics13101666] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 01/11/2023] Open
Abstract
Wound dressings have become a crucial treatment for wound healing due to their convenience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine polysaccharides are divided from most marine organisms. It possesses various bioactivities, which allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive understanding of the application of marine polysaccharides in wound dressings is particularly important for the studies of wound therapy. In this review, we first introduce the wound healing process and describe the characteristics of modern commonly used dressings. Then, the properties of various marine polysaccharides and their application in wound dressing development are outlined. Finally, strategies for developing and enhancing marine polysaccharide wound dressings are described, and an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound management and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can be combined with copolymers and active substances to prepare various forms of dressings. Among them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels are at the research frontier of their development. Therefore, marine polysaccharides are essential materials in wound dressings fabrication and have a promising future.
Collapse
Affiliation(s)
- Shenghai Shen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
| | - Xiaowen Chen
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China; (S.S.); (X.C.)
| | - Zhewen Shen
- School of Humanities, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia;
| | - Hao Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, NO. 1800 Lihu Road, Wuxi 214122, China
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, China
| |
Collapse
|
15
|
Ugrin M, Dinic J, Jeremic S, Dragicevic S, Banovic Djeri B, Nikolic A. Bacterial Nanocellulose as a Scaffold for In Vitro Cell Migration Assay. NANOMATERIALS 2021; 11:nano11092322. [PMID: 34578638 PMCID: PMC8468300 DOI: 10.3390/nano11092322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
Bacterial nanocellulose (BNC) stands out among polymers as a promising biomaterial due to its mechanical strength, hydrophilicity, biocompatibility, biodegradability, low toxicity and renewability. The use of scaffolds based on BNC for 3D cell culture has been previously demonstrated. The study exploited excellent properties of the BNC to develop an efficient and low-cost in vitro cell migration assay. The BNC scaffold was introduced into a cell culture 24 h after the SW480 cells were seeded, and cells were allowed to enter the scaffold within the next 24–48 h. The cells were stained with different fluorophores either before or after the introduction of the scaffold in the culture. Untreated cells were observed to enter the BNC scaffold in significant numbers, form clusters and retain a high viability after 48 h. To validate the assay’s usability for drug development, the treatments of SW480 cells were performed using aspirin, an agent known to reduce the migratory potential of this cell line in culture. This study demonstrates the application of BNC as a scaffold for cell migration testing as a low-cost alternative to commercial assays based on the Boyden chamber principle. The assay could be further developed for routine use in cancer research and anticancer drug development.
Collapse
Affiliation(s)
- Milena Ugrin
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444A, 11042 Belgrade, Serbia; (M.U.); (S.J.); (S.D.); (B.B.D.)
| | - Jelena Dinic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia;
| | - Sanja Jeremic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444A, 11042 Belgrade, Serbia; (M.U.); (S.J.); (S.D.); (B.B.D.)
| | - Sandra Dragicevic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444A, 11042 Belgrade, Serbia; (M.U.); (S.J.); (S.D.); (B.B.D.)
| | - Bojana Banovic Djeri
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444A, 11042 Belgrade, Serbia; (M.U.); (S.J.); (S.D.); (B.B.D.)
| | - Aleksandra Nikolic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444A, 11042 Belgrade, Serbia; (M.U.); (S.J.); (S.D.); (B.B.D.)
- Correspondence:
| |
Collapse
|
16
|
Cellulose Nanocrystals/Chitosan-Based Nanosystems: Synthesis, Characterization, and Cellular Uptake on Breast Cancer Cells. NANOMATERIALS 2021; 11:nano11082057. [PMID: 34443888 PMCID: PMC8398441 DOI: 10.3390/nano11082057] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Cellulose nanocrystals (CNCs) are elongated biobased nanostructures with unique characteristics that can be explored as nanosystems in cancer treatment. Herein, the synthesis, characterization, and cellular uptake on folate receptor (FR)-positive breast cancer cells of nanosystems based on CNCs and a chitosan (CS) derivative are investigated. The physical adsorption of the CS derivative, containing a targeting ligand (folic acid, FA) and an imaging agent (fluorescein isothiocyanate, FITC), on the surface of the CNCs was studied as an eco-friendly methodology to functionalize CNCs. The fluorescent CNCs/FA-CS-FITC nanosystems with a rod-like morphology showed good stability in simulated physiological and non-physiological conditions and non-cytotoxicity towards MDA-MB-231 breast cancer cells. These functionalized CNCs presented a concentration-dependent cellular internalization with a 5-fold increase in the fluorescence intensity for the nanosystem with the higher FA content. Furthermore, the exometabolic profile of the MDA-MB-231 cells exposed to the CNCs/FA-CS-FITC nanosystems disclosed a moderate impact on the cells’ metabolic activity, limited to decreased choline uptake and increased acetate release, which implies an anti-proliferative effect. The overall results demonstrate that the CNCs/FA-CS-FITC nanosystems, prepared by an eco-friendly approach, have a high affinity towards FR-positive cancer cells and thus might be applied as nanocarriers with imaging properties for active targeted therapy.
Collapse
|