1
|
Chiang CY, Chen CH, Wu CW. Fiber Optic Localized Surface Plasmon Resonance Sensor Based on Carboxymethylated Dextran Modified Gold Nanoparticles Surface for High Mobility Group Box 1 (HMGB1) Analysis. BIOSENSORS 2023; 13:bios13050522. [PMID: 37232883 DOI: 10.3390/bios13050522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
Rapid, sensitive, and reliable detection of high mobility group box 1 (HMGB1) is essential for medical and diagnostic applications due to its important role as a biomarker of chronic inflammation. Here, we report a facile method for the detection of HMGB1 using carboxymethyl dextran (CM-dextran) as a bridge molecule modified on the surface of gold nanoparticles combined with a fiber optic localized surface plasmon resonance (FOLSPR) biosensor. Under optimal conditions, the results showed that the FOLSPR sensor detected HMGB1 with a wide linear range (10-10 to 10-6 g/mL), fast response (less than 10 min), and a low detection limit of 43.4 pg/mL (1.7 pM) and high correlation coefficient values (>0.9928). Furthermore, the accurate quantification and reliable validation of kinetic binding events measured by the currently working biosensors are comparable to surface plasmon resonance sensing systems, providing new insights into direct biomarker detection for clinical applications.
Collapse
Affiliation(s)
- Chang-Yue Chiang
- Graduate School of Engineering Science and Technology and Interdisciplinary Program of Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| | - Chien-Hsing Chen
- Department of Biomechatronics Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chin-Wei Wu
- Graduate School of Engineering Science and Technology and Interdisciplinary Program of Engineering, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
| |
Collapse
|
2
|
Guthula LS, Yeh KT, Huang WL, Chen CH, Chen YL, Huang CJ, Chau LK, Chan MWY, Lin SH. Quantitative and amplification-free detection of SOCS-1 CpG methylation percentage analyses in gastric cancer by fiber optic nanoplasmonic biosensor. Biosens Bioelectron 2022; 214:114540. [PMID: 35834975 DOI: 10.1016/j.bios.2022.114540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 06/27/2022] [Accepted: 07/01/2022] [Indexed: 01/16/2023]
Abstract
A new innovative approach is essential for early and effective diagnosis of gastric cancer, using promoter hypermethylation of the tumor suppressor, SOCS-1, that is frequently inactivated in human cancers. We have developed an amplification-free fiber optic nanoplasmonic biosensor for detecting DNA methylation of the SOCS-1 human genome. The method is based on the fiber optic nanogold-linked sorbent assay of PCR-free DNA from human gastric tumor tissue and cell lines. We designed a specific DNA probe fabricated on the fiber core surface while the other probe is bioconjugated with gold nanoparticles in free form to allow percentage determination and differentiating the methylated and unmethylated cell lines, further demonstrating the SOCS-1 methylation occurs in cancer patients but not in normal cell lines. The observed detection limit is 0.81 fM for methylated DNA, and the detection time is within 15 min. In addition, our data were significantly correlated to the data obtained from PCR-based pyrosequencing, and yet with superior accuracy. Hence our results provide new insight to the quantitative evaluation of methylation status of the human genome and can act as an alternative to PCR with a great potential.
Collapse
Affiliation(s)
| | - Kun-Tu Yeh
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan; College of Medicine, National Chung Hsiung University, Taichung, Taiwan
| | - Wen-Long Huang
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan
| | - Chun-Hsien Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Ling Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, Taiwan
| | - Chun-Jen Huang
- Department of Chemical and Materials Engineering, NCU-Covestro Research Center, National Central University, Taoyuan, Taiwan; R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Lai-Kwan Chau
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi, Taiwan; Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, Taiwan; Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan.
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi, Taiwan; Center for Nano Bio-Detection, National Chung Cheng University, Chiayi, Taiwan; Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Chiayi, Taiwan; Epigenomics and Human Disease Research Center, National Chung Cheng University, Chiayi, Taiwan.
| | - Shu-Hui Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan; Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan.
| |
Collapse
|
3
|
Chen CH, Chiang CY. Determination of the Highly Sensitive Carboxyl-Graphene Oxide-Based Planar Optical Waveguide Localized Surface Plasmon Resonance Biosensor. NANOMATERIALS 2022; 12:nano12132146. [PMID: 35807986 PMCID: PMC9268428 DOI: 10.3390/nano12132146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 12/20/2022]
Abstract
This study develops a highly sensitive and low-cost carboxyl-graphene-oxide-based planar optical waveguide localized surface plasmon resonance biosensor (GO-OW LSPR biosensor), a system based on measuring light intensity changes. The structure of the sensing chip comprises an optical waveguide (OW)-slide glass and microfluidic-poly (methyl methacrylate) (PMMA) substrate, and the OW-slide glass surface-modified gold nanoparticle (AuNP) combined with graphene oxide (GO). As the GO has an abundant carboxyl group (–COOH), the number of capture molecules can be increased. The refractive index sensing system uses silver-coated reflective film to compare the refractive index sensitivity of the GO-OW LSPR biosensor to increase the refractive index sensitivity. The result shows that the signal variation of the system with the silver-coated reflective film is 1.57 times that of the system without the silver-coated reflective film. The refractive index sensitivity is 5.48 RIU−1 and the sensor resolution is 2.52 ± 0.23 × 10−6 RIU. The biochemical sensing experiment performs immunoglobulin G (IgG) and streptavidin detection. The limits of detection of the sensor for IgG and streptavidin are calculated to be 23.41 ± 1.54 pg/mL and 5.18 ± 0.50 pg/mL, respectively. The coefficient of variation (CV) of the repeatability experiment (sample numbers = 3) is smaller than 10.6%. In addition, the affinity constants of the sensor for anti-IgG/IgG and biotin/streptavidin are estimated to be 1.06 × 107 M−1 and 7.30 × 109 M−1, respectively. The result shows that the GO-OW LSPR biosensor has good repeatability and very low detection sensitivity. It can be used for detecting low concentrations or small biomolecules in the future.
Collapse
Affiliation(s)
- Chien-Hsing Chen
- Department of Biomechatronics Engineering, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Chang-Yue Chiang
- Graduate School of Engineering Science and Technology and Bachelor Program in Interdisciplinary Studies, National Yunlin University of Science and Technology, Yunlin 64002, Taiwan
- Correspondence: ; Tel.: +886-5-5342601 (ext. 4014)
| |
Collapse
|
4
|
Liu L, Han C, Jiang M, Zhang T, Kang Q, Wang X, Wang P, Zhou F. Rapid and regenerable surface plasmon resonance determinations of biomarker concentration and biomolecular interaction based on tris-nitrilotriacetic acid chips. Anal Chim Acta 2021; 1170:338625. [PMID: 34090589 DOI: 10.1016/j.aca.2021.338625] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022]
Abstract
The tris-nitrilotriacetic acid (tris-NTA) chip has been used for surface plasmon resonance (SPR) kinetic studies involving histidine (His)-tagged proteins. However, its full potential, especially for analyte quantification in complex biological media, has not been realized due to a lack of systematic studies on the factors governing ligand immobilization, surface regeneration, and data analysis. We demonstrate that the tris-NTA chip not only retains His-tagged proteins more strongly than its mono-NTA counterpart, but also orients them more uniformly than protein molecules coupled to carboxymethylated dextran films. We accurately and rapidly quantified immunoglobulin (IgG) molecules in sera by using the initial association phase of their conjugation with His-tagged protein G densely immobilized onto the tris-NTA chip, and established criteria for selecting the optimal time for constructing the calibration curve. The method is highly reproducible (less than 2% RSD) and three orders of magnitude more sensitive than immunoturbidimetry. In addition, we found that the amount of His-protein immobilized is highly dependent on the protein isoelectric point (pI). Reliable kinetic data in a multi-channel SPR instrument can also be rapidly obtained by using a low density of immobilized His-tagged protein. The experimental parameters and procedures outlined in this study help expand the range of SPR applications involving His-tagged proteins.
Collapse
Affiliation(s)
- Luyao Liu
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Chaowei Han
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Meng Jiang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Tiantian Zhang
- University Hospital, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Qing Kang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, PR China
| | - Xiaoying Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Jinan, Shandong, 250353, PR China
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, PR China.
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, 250022, PR China.
| |
Collapse
|