1
|
Li X, Liu J, Huang J, Huang B, Li L, Li Y, Hu W, Li C, Ali S, Yang T, Xue F, Han Z, Tang YL, Hu W, Zhang Z. Epitaxial Strain Enhanced Ferroelectric Polarization toward a Giant Tunneling Electroresistance. ACS NANO 2024; 18:7989-8001. [PMID: 38438318 DOI: 10.1021/acsnano.3c10933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
A substantial ferroelectric polarization is the key for designing high-performance ferroelectric nonvolatile memories. As a promising candidate system, the BaTiO3/La0.67Sr0.33MnO3 (BTO/LSMO) ferroelectric/ferromagnetic heterostructure has attracted a lot of attention thanks to the merits of high Curie temperature, large spin polarization, and low ferroelectric coercivity. Nevertheless, the BTO/LSMO heterostructure suffers from a moderate FE polarization, primarily due to the quick film-thickness-driven strain relaxation. In response to this challenge, we propose an approach for enhancing the FE properties of BTO films by using a Sr3Al2O6 (SAO) buffering layer to mitigate the interfacial strain relaxation. The continuously tunable strain allows us to illustrate the linear dependence of polarization on epitaxial strain with a large strain-sensitive coefficient of ∼27 μC/cm2 per percent strain. This results in a giant polarization of ∼80 μC/cm2 on the BTO/LSMO interface. Leveraging this large polarization, we achieved a giant tunneling electroresistance (TER) of ∼105 in SAO-buffered Pt/BTO/LSMO ferroelectric tunnel junctions (FTJs). Our research uncovers the fundamental interplay between strain, polarization magnitude, and device performance, such as on/off ratio, thereby advancing the potential of FTJs for next-generation information storage applications.
Collapse
Affiliation(s)
- Xiaoqi Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Jiaqi Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Jianqi Huang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Biaohong Huang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Lingli Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yizhuo Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wentao Hu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Changji Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Sajjad Ali
- Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Teng Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Fei Xue
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Micro-Nano Electronics, Zhejiang University, Hangzhou 311215, China
| | - Zheng Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Optoelectronics, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - Yun-Long Tang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Weijin Hu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Zhidong Zhang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|