1
|
Messori A, Martelli G, Piazzi A, Basile F, De Maron J, Fasolini A, Mazzoni R. Molecular Ruthenium Cyclopentadienone Bifunctional Catalysts for the Conversion of Sugar Platforms to Hydrogen. Chempluschem 2023; 88:e202300357. [PMID: 37572103 DOI: 10.1002/cplu.202300357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Molecular ruthenium cyclopentadienone complexes were employed for the first time as pre-catalysts in the homogeneously catalysed Aqueous Phase Reforming (APR) of glucose. Shvo's complex resulted the best pre-catalyst (loading 2 mol %) with H2 yields up to 28.9 % at 150 °C. Studies of the final mixture allowed to identify the catalyst's resting state as a mononuclear dicarbonyl complex in the extracted organic fraction. In situ NMR experiments and HPLC analyses on the aqueous fraction gave awareness of the presence of sorbitol, fructose, 5-hydroxymethylfurfural and furfural as final fate or intermediates in the transformations under APR conditions. These results were summarized in a proposed mechanism, with particular emphasis on the steps where hydrogen was obtained as the product. Benzoquinone positively affected the catalyst activation when employed as an equimolar additive.
Collapse
Affiliation(s)
- Alessandro Messori
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Giulia Martelli
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Andrea Piazzi
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Francesco Basile
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Jacopo De Maron
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Andrea Fasolini
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| | - Rita Mazzoni
- Department of Industrial Chemistry "Toso Montanari" viale, Risorgimento 4, 40136, Bologna, Italy
- Center for Chemical Catalysis - C3, University of Bologna viale, Risorgimento 4, 40136, Bologna, Italy
| |
Collapse
|
2
|
Integration of catalytic methane oxy-reforming and water gas shift membrane reactor for intensified pure hydrogen production and methanation suppression over Ce0.5Zr0.5O2 based catalysts. Catal Today 2023. [DOI: 10.1016/j.cattod.2023.114047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
3
|
De Maron J, Mafessanti R, Gramazio P, Orfei E, Fasolini A, Basile F. H 2 Production by Methane Oxy-Reforming: Effect of Catalyst Pretreatment on the Properties and Activity of Rh-Ce 0.5Zr 0.5O 2 Synthetized by Microemulsion. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:53. [PMID: 36615963 PMCID: PMC9823839 DOI: 10.3390/nano13010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Green hydrogen introduction in hard-to-abate processes is held back by the cost of substituting steam reforming plants with electrolyzers. However, green hydrogen can be integrated in properly modified reforming processes. The process proposed here involves the substitution of steam reforming with oxy-reforming, which is the coupling of the former with catalytic partial oxidation (CPO), exploiting the pure oxygen coproduced during electrolysis to feed CPO, which allows for better heat exchange thanks to its exothermic nature. With the aim of developing tailored catalysts for the oxy-reforming process, Ce0.5Zr0.5O2 was synthetized by microemulsion and impregnated with Rh. The Ce-based supports were calcined at different temperatures (750 and 900 °C) and the catalysts were reduced at 750 °C or 500 °C. Tuning the calcination temperature allowed for an increase in the support surface area, resulting in well-dispersed Rh species that provided a high reducibility for both the metal active phase and the Ce-based support. This allowed for an increase in methane conversion under different conditions of contact time and pressure and the outperformance of the other catalysts. The higher activity was related to well-dispersed Rh species interacting with the support that provided a high concentration of surface OH* on the Ce-based support and increased methane dissociation. This anticipated the occurrence and the extent of steam reforming over the catalytic bed, producing a smoother thermal profile.
Collapse
Affiliation(s)
- Jacopo De Maron
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
- Center for Chemical Catalysis—C3, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| | - Rodolfo Mafessanti
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| | - Pio Gramazio
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
- Center for Chemical Catalysis—C3, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| | - Elisabetta Orfei
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
- Center for Chemical Catalysis—C3, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| | - Andrea Fasolini
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
- Center for Chemical Catalysis—C3, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| | - Francesco Basile
- “Toso Montanari” Industrial Chemistry Department, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
- Center for Chemical Catalysis—C3, Alma Mater Studiorum, Università di Bologna, 40136 Bologna, Italy
| |
Collapse
|
4
|
Liu Y, Zhong B, Lawal A. Recovery and utilization of crude glycerol, a biodiesel byproduct. RSC Adv 2022; 12:27997-28008. [PMID: 36320273 PMCID: PMC9523763 DOI: 10.1039/d2ra05090k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
Biodiesel production has increased significantly in the past decade because it has been demonstrated to be a viable alternative and renewable fuel. Consequently, the production of crude glycerol, the main byproduct of the transesterification of lipids to biodiesel, has risen as well. Therefore, the effective recovery and utilization of crude glycerol can provide biodiesel with additional value. In this review, we first summarized the state-of-the-art progress on crude glycerol recovery and purification. Subsequently, numerous approaches have been reviewed for the utilization of crude glycerol, including use as animal feeds, for combustion, anaerobic fermentation, and chemical conversion. Finally, an extensive discussion and outlook is presented in relation to the techniques and processes in the chemical conversion of crude glycerol.
Collapse
Affiliation(s)
- Yujia Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Biqi Zhong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
| | - Adeniyi Lawal
- New Jersey Center for MicroChemical Systems, Department of Chemical Engineering and Materials Science, Stevens Institute of Technology Castle Point on Hudson Hoboken NJ 07030 USA
| |
Collapse
|
5
|
Wojcieszak R, Ghazzal MN. Getting Greener with the Synthesis of Nanoparticles and Nanomaterials. NANOMATERIALS 2022; 12:nano12142452. [PMID: 35889676 PMCID: PMC9323593 DOI: 10.3390/nano12142452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Robert Wojcieszak
- University Lille, CNRS, Centrale Lille, University Artois, UMR 8181-UCCS-Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
- Correspondence:
| | - Mohamed Nawfal Ghazzal
- Institut de Chimie Physique, Université Paris-Saclay, CNRS, UMR 8000, F-91405 Orsay, France;
| |
Collapse
|
6
|
Wang H, Li GM, Li B, You JL. An Effective Strategy for Template-Free Electrodeposition of Aluminum Nanowires with Highly Controllable Irregular Morphologies. NANOMATERIALS 2022; 12:nano12091390. [PMID: 35564099 PMCID: PMC9105039 DOI: 10.3390/nano12091390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023]
Abstract
Aluminum nanowires with irregular morphologies were prepared by template-free electrodeposition from a room-temperature chloroaluminate ionic liquid. The effects of the diffusion condition and deposition potential on the morphologies of Al nanowires were investigated. The decrease of diffusion flux leads to the formation of particular segmented morphologies of Al nanowires. A dynamic equilibrium between the electrochemical reaction and the diffusion of Al2Cl7− results in the current fluctuation and the periodical variation of diameters in the Al nanowires growth period. Al nanowires with several kinds of morphologies can be controllably electrodeposited under a restricted diffusion condition, without using a template. Increasing the overpotential shows the similar influence on the morphology of Al nanowires as the decrease in diffusion flux under the restricted diffusion condition. Most of the segmented Al nanowires have a single crystalline structure and grow in the [100] orientation. This work also provides a new strategy for the fabrication of nanowires with highly controllable irregular morphologies.
Collapse
Affiliation(s)
- Heng Wang
- School of Mechanical and Power Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China; (H.W.); (G.-M.L.)
| | - Guo-Min Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China; (H.W.); (G.-M.L.)
| | - Bing Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China; (H.W.); (G.-M.L.)
- Correspondence: (B.L.); (J.-L.Y.)
| | - Jing-Lin You
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- Correspondence: (B.L.); (J.-L.Y.)
| |
Collapse
|