1
|
Zhang YS, Wang T, Bao ZL, Qian PF, Liu XC, Geng WH, Zhang D, Wang SW, Zhu Q, Geng HZ. MXene and AgNW based flexible transparent conductive films with sandwich structure for high-performance EMI shielding and electrical heaters. J Colloid Interface Sci 2024; 665:376-388. [PMID: 38537586 DOI: 10.1016/j.jcis.2024.03.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/17/2024]
Abstract
With the popularization of 5G technology and the development of science and technology, flexible and transparent conductive films (TCF) are increasingly used in the preparation of optoelectronic devices such as electromagnetic shielding devices, transparent flexible heaters, and solar cells. Silver nanowires (AgNW) are considered the best material for replacing indium tin oxide to prepare TCFs due to their excellent comprehensive properties. However, the loose overlap between AgNWs is a significant reason for the high resistance. This article investigates a sandwich structured conductive network composed of AgNW and Ti3C2Tx MXene for high-performance EMI shielding and transparent electrical heaters. Polyethylene pyrrolidone (PVP) solution was used to hydrophilic modify PET substrate, and then MXene, AgNW, and MXene were assembled layer by layer using spin coating method to form a TCF with a sandwich structure. One-dimensional AgNW is used to provide electron transfer channels and improve light penetration, while two-dimensional MXene nanosheets are used for welding AgNWs and adding additional conductive channels. The flexible TCF has excellent transmittance (85.1 % at 550 nm) and EMI shielding efficiency (27.1 dB). At the voltage of 5 V, the TCF used as a heater can reach 85.6 °C. This work offers an innovative approach to creating TCFs for the future generation.
Collapse
Affiliation(s)
- Yi-Song Zhang
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Tao Wang
- Faculty of Engineering, China University of Petroleum-Beijing at Karamay, Karamay 834000, China
| | - Ze-Long Bao
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Peng-Fei Qian
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xuan-Chen Liu
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wen-Hao Geng
- Tianji Zhencai Technology (Hebei) Co., Ltd., Cangzhou 061000, China
| | - Di Zhang
- Tianji Zhencai Technology (Hebei) Co., Ltd., Cangzhou 061000, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China
| | - Shi-Wei Wang
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Qingxia Zhu
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; Tianji Zhencai Technology (Hebei) Co., Ltd., Cangzhou 061000, China.
| | - Hong-Zhang Geng
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China; Tianji Zhencai Technology (Hebei) Co., Ltd., Cangzhou 061000, China; Cangzhou Institute of Tiangong University, Cangzhou 061000, China.
| |
Collapse
|
2
|
Uddin MM, Kabir MH, Ali MA, Hossain MM, Khandaker MU, Mandal S, Arifutzzaman A, Jana D. Graphene-like emerging 2D materials: recent progress, challenges and future outlook. RSC Adv 2023; 13:33336-33375. [PMID: 37964903 PMCID: PMC10641765 DOI: 10.1039/d3ra04456d] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/18/2023] [Indexed: 11/16/2023] Open
Abstract
Owing to the unique physical and chemical properties of 2D materials and the great success of graphene in various applications, the scientific community has been influenced to explore a new class of graphene-like 2D materials for next-generation technological applications. Consequently, many alternative layered and non-layered 2D materials, including h-BN, TMDs, and MXenes, have been synthesized recently for applications related to the 4th industrial revolution. In this review, recent progress in state-of-the-art research on 2D materials, including their synthesis routes, characterization and application-oriented properties, has been highlighted. The evolving applications of 2D materials in the areas of electronics, optoelectronics, spintronic devices, sensors, high-performance and transparent electrodes, energy conversion and storage, electromagnetic interference shielding, hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nanocomposites are discussed. In particular, the state-of-the-art applications, challenges, and outlook of every class of 2D material are also presented as concluding remarks to guide this fast-progressing class of 2D materials beyond graphene for scientific research into next-generation materials.
Collapse
Affiliation(s)
- Md Mohi Uddin
- Department of Physics, Chittagong University of Engineering and Technology Chattogram-4349 Bangladesh
| | - Mohammad Humaun Kabir
- Department of Physics, Chittagong University of Engineering and Technology Chattogram-4349 Bangladesh
| | - Md Ashraf Ali
- Department of Physics, Chittagong University of Engineering and Technology Chattogram-4349 Bangladesh
| | - Md Mukter Hossain
- Department of Physics, Chittagong University of Engineering and Technology Chattogram-4349 Bangladesh
| | - Mayeen Uddin Khandaker
- Faculty of Graduate Studies, Daffodil International University Daffodil Smart City, Birulia, Savar Dhaka 1216 Bangladesh
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University 47500 Bandar Sunway Selangor Malaysia
| | - Sumit Mandal
- Vidyasagar College 39, Sankar Ghosh Lane Kolkata 700006 West Bengal India
| | - A Arifutzzaman
- Tyndall National Institute, University College Cork Lee Maltings Cork T12 R5CP Ireland
| | - Debnarayan Jana
- Department of Physics, University of Calcutta 92 A P C Road Kolkata 700009 West Bengal India
| |
Collapse
|
3
|
Garg R, Patra NR, Samal S, Babbar S, Parida K. A review on accelerated development of skin-like MXene electrodes: from experimental to machine learning. NANOSCALE 2023; 15:8110-8133. [PMID: 37096943 DOI: 10.1039/d2nr05969j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Foreshadowing future needs has catapulted the progress of skin-like electronic devices for human-machine interactions. These devices possess human skin-like properties such as stretchability, self-healability, transparency, biocompatibility, and wearability. This review highlights the recent progress in a promising material, MXenes, to realize soft, deformable, skin-like electrodes. Various structural designs, fabrication strategies, and rational guidelines adopted to realize MXene-based skin-like electrodes are outlined. We explicitly discussed machine learning-based material informatics to understand and predict the properties of MXenes. Finally, an outlook on the existing challenges and the future roadmap to realize soft skin-like MXene electrodes to facilitate technological advances in the next-generation human-machine interactions has been described.
Collapse
Affiliation(s)
- Romy Garg
- Institute of Nano Science and Technology, Mohali, Punjab, India
| | | | | | - Shubham Babbar
- Institute of Nano Science and Technology, Mohali, Punjab, India
| | | |
Collapse
|
4
|
Guo T, Zhou D, Deng S, Jafarpour M, Avaro J, Neels A, Heier J, Zhang C. Rational Design of Ti 3C 2T x MXene Inks for Conductive, Transparent Films. ACS NANO 2023; 17:3737-3749. [PMID: 36749603 PMCID: PMC9979651 DOI: 10.1021/acsnano.2c11180] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/31/2023] [Indexed: 06/12/2023]
Abstract
Transparent conductive electrodes (TCEs) with a high figure of merit (FOMe, defined as the ratio of transmittance to sheet resistance) are crucial for transparent electronic devices, such as touch screens, micro-supercapacitors, and transparent antennas. Two-dimensional (2D) titanium carbide (Ti3C2Tx), known as MXene, possesses metallic conductivity and a hydrophilic surface, suggesting dispersion stability of MXenes in aqueous media allowing the fabrication of MXene-based TCEs by solution processing. However, achieving high FOMe MXene TCEs has been hindered mainly due to the low intrinsic conductivity caused by percolation problems. Here, we have managed to resolve these problems by (1) using large-sized Ti3C2Tx flakes (∼12.2 μm) to reduce interflake resistance and (2) constructing compact microstructures by blade coating. Consequently, excellent optoelectronic properties have been achieved in the blade-coated Ti3C2Tx films, i.e., a DC conductivity of 19 325 S cm-1 at transmittances of 83.4% (≈6.7 nm) was obtained. We also demonstrate the applications of Ti3C2Tx TCEs in transparent Joule heaters and the field of supercapacitors, showing an outstanding Joule heating effect and high rate response, respectively, suggesting enormous potential applications in flexible, transparent electronic devices.
Collapse
Affiliation(s)
- Tiezhu Guo
- Key
Laboratory of Multifunctional Materials and Structures, Ministry of
Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an710049, Shaanxi, China
- Laboratory
for Functional Polymers, Empa, Swiss Federal
Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Di Zhou
- Key
Laboratory of Multifunctional Materials and Structures, Ministry of
Education, School of Electronic Science and Engineering, Xi’an Jiaotong University, Xi’an710049, Shaanxi, China
| | - Shungui Deng
- Laboratory
for Functional Polymers, Empa, Swiss Federal
Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
- Institute
of Materials Science and Engineering, Ecole
Polytechnique Federale de Lausanne (EPFL), Station 12, CH-1015Lausanne, Switzerland
| | - Mohammad Jafarpour
- Laboratory
for Functional Polymers, Empa, Swiss Federal
Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
- Institute
of Materials Science and Engineering, Ecole
Polytechnique Federale de Lausanne (EPFL), Station 12, CH-1015Lausanne, Switzerland
| | - Jonathan Avaro
- Center
for X-ray Analytics, Empa, Swiss Federal
Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
- Biomimetic
Membranes and Textile, Empa, Swiss Federal
Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014, St. Gallen, Switzerland
| | - Antonia Neels
- Center
for
X-ray Analytics, Empa, Swiss Federal Laboratories
for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
- Department
of Chemistry, University of Fribourg, Chemin du Musée 9, CH-1700, Fribourg, Switzerland
| | - Jakob Heier
- Laboratory
for Functional Polymers, Empa, Swiss Federal
Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland
| | - Chuanfang Zhang
- College
of Materials Science & Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
5
|
Wang J, Jin Y, Wang K, Wang X, Xiao F. Facile Transfer of a Transparent Silver Nanowire Pattern to a Soft Substrate Using Graphene Oxide as a Double-Sided Adhesion-Tuning Layer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5709-5719. [PMID: 36683282 DOI: 10.1021/acsami.2c21697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Silver nanowires (AgNWs) have been employed in various optoelectronic devices as transparent electrodes. However, it remains a great challenge to facilely pattern silver nanowires to realize desirable soft skin devices. Here, we develop an intact transfer method via a double-layered adhesion regulator of graphene oxide (GO) enabling complete transfer of a silver nanowire pattern from a tough substrate onto soft polydimethylsiloxane (PDMS) and flexible polyethylene (PE). We achieve positive and negative patterns simultaneously when selectively transferring silver nanowire patterns. The resulting patterned AgNW electrodes have uniform conductivity and long-term stability. The underlying mechanism of the clean transfer is thoroughly investigated via transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). GO plays a role in reducing the adhesion of AgNW to the donor tough substrate and enhancing adhesion of AgNW to the target soft substrate simultaneously. Finally, we demonstrate the utility of the patterned electrodes as transparent sensors detecting body motion. This work offers an effective solution to the challenging patterning problem of silver nanowires on a hydrophobic soft substrate, which is compatible with the soft component in emerging smart skin or wearable electronics.
Collapse
Affiliation(s)
- Jianzhong Wang
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Yunxia Jin
- Institute for Health Innovation & Technology, National University of Singapore, 14 Medical Drive, 117599 Singapore
| | - Kaiqing Wang
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Xiaocun Wang
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| | - Fei Xiao
- Department of Materials Science, Fudan University, 2005 Songhu Road, Shanghai 200438, People's Republic of China
| |
Collapse
|
6
|
Amara U, Hussain I, Ahmad M, Mahmood K, Zhang K. 2D MXene-Based Biosensing: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205249. [PMID: 36412074 DOI: 10.1002/smll.202205249] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
MXene emerged as decent 2D material and has been exploited for numerous applications in the last decade. The remunerations of the ideal metallic conductivity, optical absorbance, mechanical stability, higher heterogeneous electron transfer rate, and good redox capability have made MXene a potential candidate for biosensing applications. The hydrophilic nature, biocompatibility, antifouling, and anti-toxicity properties have opened avenues for MXene to perform in vitro and in vivo analysis. In this review, the concept, operating principle, detailed mechanism, and characteristic properties are comprehensively assessed and compiled along with breakthroughs in MXene fabrication and conjugation strategies for the development of unique electrochemical and optical biosensors. Further, the current challenges are summarized and suggested future aspects. This review article is believed to shed some light on the development of MXene for biosensing and will open new opportunities for the future advanced translational application of MXene bioassays.
Collapse
Affiliation(s)
- Umay Amara
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Muhmmad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
7
|
Wang Y, Liu Y, Wang T, Liu S, Chen Z, Duan S. Low-temperature nanowelding silver nanowire hybrid flexible transparent conductive film for green light OLED devices. NANOTECHNOLOGY 2022; 33:455201. [PMID: 35905646 DOI: 10.1088/1361-6528/ac8557] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Flexible organic light emitting diodes (OLED) have attracted great attention in many applications. MXene based flexible transparent conductive films (TCFs) are the most promising next-generation electrodes for flexible electronics. Herein, the sandwich conductive structure of silver nanowires (AgNWs) network, new 2D nanosheets with excellent conductivity, hydrophilicity and mechanical flexibility and PEDOT:PSS contributes to a highly transparent and conductive hybrid electrode through a simple, scalable, low-cost spray method. The Ti3C2Tx/AgNWs/PEDOT-PET film shows a low sheet resistance (<30 Ω/sq) and high transmittance (>80%) at 550 nm. Flexible OLED with such hybrid anode has the maximum brightness, current efficiency and current density, as high as 10 040 cd m-2, 3.7 cd A-1and 535.5 mA cm-2, respectively. These results indicate that the novel Ti3C2Tx/AgNWs/PEDOT-PET TCFs have a great potential for high-performance flexible optoelectronic devices.
Collapse
Affiliation(s)
- Yuzhou Wang
- College of Materials Engineering, Henan University of Engineering, Zhengzhou, People's Republic of China
| | - Yan Liu
- College of Materials Engineering, Henan University of Engineering, Zhengzhou, People's Republic of China
| | - Tao Wang
- Sinopec Petroleum Engineering Zhongyuan Corporation, Zhengzhou, People's Republic of China
| | - Shuhui Liu
- College of Materials Engineering, Henan University of Engineering, Zhengzhou, People's Republic of China
| | - Zeng Chen
- College of Materials Engineering, Henan University of Engineering, Zhengzhou, People's Republic of China
| | - Shaobo Duan
- Henan Engineering Technology Research Center of Ultrasonic Molecular Imaging and Nanotechnology, Henan Provincial People's Hospital, Zhengzhou, People's Republic of China
| |
Collapse
|
8
|
Graphene Reinforced Anticorrosion Transparent Conductive Composite Film Based on Ultra-Thin Ag Nanofilm. MATERIALS 2022; 15:ma15144802. [PMID: 35888269 PMCID: PMC9319744 DOI: 10.3390/ma15144802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Transparent conductive films are widely used in electronic products and industrial fields. Ultra-thin Ag conductive nanofilm (ACF) was prepared on a soda lime silica glass (ordinary architectural glass) substrate with industrial magnetron sputtering equipment with AZO (Al2O3 doped ZnO) as the crystal bed and wetting layer. In order to improve the corrosion resistance and conductivity of the ACF, graphene nanosheets were modified on the surface of the ACF by electrospraying for the first time. The results show that this graphene modification could be carried out continuously on a meter scale. With the modification of the graphene layer, the corrosion rate of graphene-decorated ACF (G/ACF) can be reduced by 74.56%, and after 72 h of salt spray test, the conductivity of ACF samples without modification of graphene can be reduced by 34.1%, while the conductivity of G/ACF samples with modification of graphene can be reduced by only 6.5%. This work proves the potential of graphene modified ACF to prepare robust large-area transparent conductive film.
Collapse
|
9
|
Amara U, Sarfraz B, Mahmood K, Mehran MT, Muhammad N, Hayat A, Nawaz MH. Fabrication of ionic liquid stabilized MXene interface for electrochemical dopamine detection. Mikrochim Acta 2022; 189:64. [PMID: 35038033 DOI: 10.1007/s00604-022-05162-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/26/2021] [Indexed: 01/26/2023]
Abstract
Development of MXene (Ti3C2Cl2)-based sensing platforms by exploiting their inherent active electrochemistry is highly challenging due to their characteristic poor stability in air and water. Herein, we report a cost-effective methodology to deposit MXene on a conductive graphitic pencil electrode (GPE). MXenes can provide active surface area due to their clever morphology of accordion-like sheets; however, the disposition to stack together limits their potential applications. A task-specific ionic liquid (1-methyl imidazolium acetate) is utilized as a multiplex host material to engineer MXene interface via π-π interactions as well as to act as a selective binding site for biomolecules. The resulting IL-MXene/GPE interface proved to be a highly stable interface owing to good interactions between MXene and IL that inhibited electrode leaching and boosted electron transfer at the electrode-electrolyte interface. It resulted in robust dopamine (DA) oxidation with amplified faradaic response and enhanced sensitivity (9.61 µA µM-1 cm-2) for DA detection. This fabricated sensor demonstrated large linear range (10 µM - 2000 µM), low detection limit (702 nM), high reproducibility, and good selectivity. We anticipate that such platform will pave the way for the development of stable and economically viable MXene-based sensors without sacrificing their inherent properties. Scheme 1 Schematic illustration of the IL-MXene/GPE fabrication and oxidative process towards non-enzymatic dopamine sensor.
Collapse
Affiliation(s)
- Umay Amara
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Bilal Sarfraz
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Muhammad Taqi Mehran
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, H-12, Pakistan
| | - Nawshad Muhammad
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Akhtar Hayat
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan.
| |
Collapse
|
10
|
Liu J, Zhang Y, Cheng W, Lei S, Song L, Wang B, Hu Y. Anti-Fogging, Frost-Resistant transparent and flexible silver Nanowire-Ti 3C 2T x MXene based composite films for excellent electromagnetic interference shielding ability. J Colloid Interface Sci 2021; 608:2493-2504. [PMID: 34785055 DOI: 10.1016/j.jcis.2021.10.171] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/08/2023]
Abstract
The development of electronics proposes higher requirements for flexible, transparent, and conductive materials with high electromagnetic shielding performance in viewing windows. Flexible transparent films have been fabricated by collaborating one-dimensional silver nanowires (AgNWs) and novel two-dimensional Ti3C2Tx MXene sheets on PET films with an external polymeric coating consisting of poly (vinyl alcohol) (PVA) and poly(styrene sulfonate) (PSS). Especially, the combination of different dimensional nanomaterials effectively establishes a conductive network that exhibits a synergistic effect on excellent electromagnetic interference (EMI) shielding performance, which is superior to that of pure AgNW network or Ti3C2Tx network to some extent. By optimizing the AgNWs content (0.05 mg/cm2) and Ti3C2Tx sheets content (0.01 mg/cm2), the PET/AgNW/Ti3C2Tx/PVA-PSS film exhibits a transmittance of 81% and a desirable EMI SE value of 30.5 dB. In addition, the film shows outstanding anti-fogging and frost-resistant properties due to the remarkable water absorption capacity of PVA and PSS on the external surface. Considering its efficiency and simplicity, this transparent conductive film has promising applications in flexible transparent electronic devices and optical related fields.
Collapse
Affiliation(s)
- Jiajia Liu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Zhejiang Sci Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Wenhua Cheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Shijun Lei
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Lei Song
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Bibo Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| |
Collapse
|
11
|
Li P, Kang Z, Rao F, Lu Y, Zhang Y. Nanowelding in Whole-Lifetime Bottom-Up Manufacturing: From Assembly to Service. SMALL METHODS 2021; 5:e2100654. [PMID: 34927947 DOI: 10.1002/smtd.202100654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/23/2021] [Indexed: 06/14/2023]
Abstract
The continuous miniaturization of microelectronics is pushing the transformation of nanomanufacturing modes from top-down to bottom-up. Bottom-up manufacturing is essentially the way of assembling nanostructures from atoms, clusters, quantum dots, etc. The assembly process relies on nanowelding which also existed in the synthesis process of nanostructures, construction and repair of nanonetworks, interconnects, integrated circuits, and nanodevices. First, many kinds of novel nanomaterials and nanostructures from 0D to 1D, and even 2D are synthesized by nanowelding. Second, the connection of nanostructures and interfaces between metal/semiconductor-metal/semiconductor is realized through low-temperature heat-assisted nanowelding, mechanical-assisted nanowelding, or cold welding. Finally, 2D and 3D interconnects, flexible transparent electrodes, integrated circuits, and nanodevices are constructed, functioned, or self-healed by nanowelding. All of the three nanomanufacturing stages follow the rule of "oriented attachment" mechanisms. Thus, the whole-lifetime bottom-up manufacturing process from the synthesis and connection of nanostructures to the construction and service of nanodevices can be organically integrated by nanowelding. The authors hope this review can bring some new perspective in future semiconductor industrialization development in the expansion of multi-material systems, technology pathway for the refined design, controlled synthesis and in situ characterization of complex nanostructures, and the strategies to develop and repair novel nanodevices in service.
Collapse
Affiliation(s)
- Peifeng Li
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhuo Kang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Feng Rao
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, P. R. China
- Nanomanufacturing Laboratory (NML), Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| | - Yue Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|