1
|
Deng X, Yang Z, Chan KW, Ismail N, Abu Bakar MZ. 5-Fluorouracil in Combination with Calcium Carbonate Nanoparticles Loaded with Antioxidant Thymoquinone against Colon Cancer: Synergistically Therapeutic Potential and Underlying Molecular Mechanism. Antioxidants (Basel) 2024; 13:1030. [PMID: 39334689 PMCID: PMC11429434 DOI: 10.3390/antiox13091030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Colon cancer is the third most common cancer worldwide, with high mortality. Adverse side effects and chemoresistance of the first-line chemotherapy 5-fluorouracil (5-FU) have promoted the widespread use of combination therapies. Thymoquinone (TQ) is a natural compound with potent antioxidant activity. Loading antioxidants into nano delivery systems has been a major advance in enhancing their bioavailability to improve clinical application. Hence, this study aimed to prepare the optimal TQ-loaded calcium carbonate nanoparticles (TQ-CaCO3 NPs) and investigate their therapeutic potential and underlying molecular mechanisms of TQ-CaCO3 NPs in combination with 5-FU against colon cancer. Firstly, we developed purely aragonite CaCO3 NPs with a facile mechanical ball-milling method. The pH-sensitive and biocompatible TQ-CaCO3 NPs with sustained release properties were prepared using the optimal synthesized method (a high-speed homogenizer). The in vitro study revealed that the combination of TQ-CaCO3 NPs (15 μM) and 5-FU (7.5 μM) inhibited CT26 cell proliferation and migration, induced cell apoptosis and cell cycle arrest in the G0/G1 phase, and suppressed the CT26 spheroid growth, exhibiting a synergistic effect. Finally, network pharmacology and molecular docking results indicated the potential targets and crucial signaling pathways of TQ-CaCO3 NPs in combination with 5-FU against colon cancer. Therefore, TQ-CaCO3 NPs combined with 5-FU could enhance the anti-colon cancer effects of 5-FU with broader therapeutic targets, warranting further application for colon cancer treatment.
Collapse
Affiliation(s)
- Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
2
|
Al-Sahlawi F, Al-Ani I, El-Tanani M, Farooq HA. Preparation and evaluation of biological activity of ZSM-5 nanoparticles loaded with gefitinib for the treatment of non-small cell lung carcinoma. PHARMACIA 2024; 71:1-12. [DOI: 10.3897/pharmacia.71.e112449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Background: Gefitinib (GEF) is a tyrosine kinase inhibitor that has proven good efficacy against Non-small cell Lung Carcinoma (NSCLC). It has low solubility and dissolution rate and low oral bioavailability. This work aimed to improve efficacy by loading on ZSM-5 silica nanoparticles and testing the prepared delivery system on A-549 lung cancer cells.
Methods: ZSM-5 was synthesized in the laboratory and different methods of loading GEF on the nanoparticles were used, then the system was characterized by X-ray diffraction, Fourier Transport Infra-Red (FTIR), and drug release and dissolution.
Results and conclusion: GEF-loaded nanoparticles (NPs) showed prolonged release of GEF over 12 hours with an improved biological efficacy expressed by the decrease in IC50 compared to free GEF (P < 0.001) using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay. Also, there was a significant decrease in migration and colony formation ability of the GEF-loaded NPs on A-549 lung cancer cells. In conclusion, loading GEF onto ZSM-5 NPs resulted in a lower IC50 and improved biological action toward A-549 cells.
Collapse
|
3
|
Ashrafizadeh M, Zarrabi A, Bigham A, Taheriazam A, Saghari Y, Mirzaei S, Hashemi M, Hushmandi K, Karimi-Maleh H, Nazarzadeh Zare E, Sharifi E, Ertas YN, Rabiee N, Sethi G, Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev 2023; 43:2115-2176. [PMID: 37165896 DOI: 10.1002/med.21971] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, PR China
| | | | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mingzhi Shen
- Department of Cardiology, Hainan Hospital of PLA General Hospital, Sanya, China
| |
Collapse
|
4
|
Maarof NNN, Abdulmalek E, Fakurazi S, Rahman MBA. Biodegradable Carbonate Apatite Nanoparticle as a Delivery System to Promote Afatinib Delivery for Non-Small Cell Lung Cancer Treatment. Pharmaceutics 2022; 14:1230. [PMID: 35745802 PMCID: PMC9228174 DOI: 10.3390/pharmaceutics14061230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/04/2022] Open
Abstract
Nanomedicine-based drug-delivery systems have significant interest in cancer treatment, such as improving the stabilities and biocompatibilities, precise targeting, and reducing toxicities for non-cancerous cells. Herein, this study presents the synthesis and characterisation of carbonate apatite nanoparticles (nCA) and encapsulated afatinib (AFA) as promising drug delivery candidates for lung cancer treatment. nCA/AFA was synthesised and physicochemically characterised, then the encapsulation capacity, drug loading, and cumulative drug release profile were evaluated. Powder X-ray diffraction (PXRD) confirmed that the synthesised nCA is apatite. Fourier-transform infrared spectroscopy (FTIR) results confirmed the drug loading into the nanoparticles. High-resolution transmission electron microscopy (HR-TEM) determined the morphology of nCA and nCA/AFA and the diameters of 47.36 ± 3.16 and 42.97 ± 2.78 nm, respectively, without an unaltered nCA phase. Encapsulation efficiency (%) and drug loading (%) were 55.08% ± 1.68% and 8.19% ± 0.52%. Brunauer-Emmett-Teller (BET) and dynamic light-scattering (DLS) results revealed that the synthesised nCA is mesoporous, with a surface area of 55.53 m2/g, and is negatively charged. Atomic force microscopy (AFM) showed increasing roughness of nCA/AFA compared to nCA. The drug release from the nano-formulation nCA/AFA demonstrated slow and sustained release compared to the pure drug. Accordingly, nCA/AFA represents a promising drug delivery system for NSCLC treatment.
Collapse
Affiliation(s)
- Nian N. N. Maarof
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.N.N.M.); (E.A.)
- Department of Chemistry, College of Education, University of Sulaimani, Sulaimani 46001, Iraq
| | - Emilia Abdulmalek
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.N.N.M.); (E.A.)
| | - Sharida Fakurazi
- Laboratory of Vaccines and Immunotherapeutics, Institute of Bioscience, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia;
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia UPM, Serdang 43400, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Integrated Chemical BioPhysics Research, Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (N.N.N.M.); (E.A.)
- UPM-MAKNA Cancer Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Foglizzo V, Marchiò S. Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy. Cancers (Basel) 2022; 14:cancers14102473. [PMID: 35626078 PMCID: PMC9139219 DOI: 10.3390/cancers14102473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/26/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Conventional antitumor drugs have limitations, including poor water solubility and lack of targeting capability, with consequent non-specific distribution, systemic toxicity, and low therapeutic index. Nanotechnology promises to overcome these drawbacks by exploiting the physical properties of diverse nanocarriers that can be linked to moieties with binding selectivity for cancer cells. The use of nanoparticles as therapeutic formulations allows a targeted delivery and a slow, controlled release of the drug(s), making them tunable modules for applications in precision medicine. In addition, nanoparticles are also being developed as cancer vaccines, offering an opportunity to increase both cellular and humoral immunity, thus providing a new weapon to beat cancer. Abstract Malignant tumors originate from a combination of genetic alterations, which induce activation of oncogenes and inactivation of oncosuppressor genes, ultimately resulting in uncontrolled growth and neoplastic transformation. Chemotherapy prevents the abnormal proliferation of cancer cells, but it also affects the entire cellular network in the human body with heavy side effects. For this reason, the ultimate aim of cancer therapy remains to selectively kill cancer cells while sparing their normal counterparts. Nanoparticle formulations have the potential to achieve this aim by providing optimized drug delivery to a pathological site with minimal accumulation in healthy tissues. In this review, we will first describe the characteristics of recently developed nanoparticles and how their physical properties and targeting functionalization are exploited depending on their therapeutic payload, route of delivery, and tumor type. Second, we will analyze how nanoparticles can overcome multidrug resistance based on their ability to combine different therapies and targeting moieties within a single formulation. Finally, we will discuss how the implementation of these strategies has led to the generation of nanoparticle-based cancer vaccines as cutting-edge instruments for cancer immunotherapy.
Collapse
Affiliation(s)
- Valentina Foglizzo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Serena Marchiò
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence: ; Tel.: +39-01199333239
| |
Collapse
|
6
|
Ejigah V, Mandala B, Akala EO. Nanotechnology in the development of small and large molecule tyrosine kinase inhibitors and immunotherapy for the treatment of HER2-positive breast cancer. JOURNAL OF CANCER & METASTASIS RESEARCH 2022; 4:6-22. [PMID: 38966076 PMCID: PMC11223443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The HER2 receptor tyrosine kinase is a member of the epidermal growth factor receptor family which includes EGFR, HER3 and HER4. They are known to play critical roles in both normal development and cancer. A subset of breast cancers is associated with the HER2 gene, which is amplified and/or overexpressed in 20-25% of invasive breast cancers and is correlated with tumor resistance to chemotherapy, Metastatic Breast Cancer (MBC) and poor patient survival. The advent of receptor tyrosine kinase inhibitors has improved the prognosis of HER2-postive breast cancers; however, HER2+MBC invariably progresses (acquired resistance or de novo resistance). The monoclonal antibody-based drugs (large molecule TKIs) target the extracellular binding domain of HER2; while the small molecule TKIs act intracellularly to inhibit proliferation and survival signals. We reviewed the modes of action of the TKIs with a view to showing which of the TKIs could be combined in nanoparticles to benefit from the power of nanotechnology (reduced toxicity, improved solubility of hydrophobic drugs, long circulation half-lives, circumventing efflux pumps and preventing capture by the reticuloendothelial system (mononuclear phagocyte system). Nanotherapeutics also mediate the synchronization of the pharmacokinetics and biodistribution of multiple drugs incorporated in the nanoparticles. Novel TKIs that are currently under investigation with or without nanoparticle delivery are mentioned, and nano-based strategies to improve their delivery are suggested. Immunotherapies currently in clinical practice, clinical trials or at the preclinical stage are discussed. However, immunotherapy only works well in relatively small subsets of patients. Combining nanomedicine with immunotherapy can boost therapeutic outcomes, by turning "cold" non-immunoresponsive tumors and metastases into "hot" immunoresponsive lesions.
Collapse
Affiliation(s)
- Victor Ejigah
- Department of Pharmaceutical Sciences, College of Pharmacy Howard University Washington DC, Center for Drug Research and Development (CDRD), USA
| | - Bharathi Mandala
- Department of Pharmaceutical Sciences, College of Pharmacy Howard University Washington DC, Center for Drug Research and Development (CDRD), USA
| | - Emmanuel O Akala
- Department of Pharmaceutical Sciences, College of Pharmacy Howard University Washington DC, Center for Drug Research and Development (CDRD), USA
| |
Collapse
|
7
|
Díez-Pascual AM, Di Bartolomeo A, Chen G. Selected Papers from the Second International Online Conference on Nanomaterials. NANOMATERIALS 2022; 12:nano12030302. [PMID: 35159646 PMCID: PMC8839519 DOI: 10.3390/nano12030302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 12/04/2022]
Abstract
Nanomaterials have gained eminence in technological developments due to their tunable physical, chemical, and biological properties, such as wettability, electrical and thermal conductivity, magnetism, light absorption and emission, catalytic activity, and so forth, leading to devices with improved performance compared to their microscopic counterparts [...]
Collapse
Affiliation(s)
- Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Madrid, Spain
- Correspondence:
| | - Antonio Di Bartolomeo
- Physics Department, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Guanying Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150090, China;
| |
Collapse
|
8
|
Synthesis and Characterization of Gefitinib and Paclitaxel Mono and Dual Drug-Loaded Blood Cockle Shells ( Anadara granosa)-Derived Aragonite CaCO 3 Nanoparticles. NANOMATERIALS 2021; 11:nano11081988. [PMID: 34443820 PMCID: PMC8398682 DOI: 10.3390/nano11081988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022]
Abstract
Calcium carbonate has slowly paved its way into the field of nanomaterial research due to its inherent properties: biocompatibility, pH-sensitivity, and slow biodegradability. In our efforts to synthesize calcium carbonate nanoparticles (CSCaCO3NP) from blood cockle shells (Anadara granosa), we developed a simple method to synthesize CSCaCO3NP, and loaded them with gefitinib (GEF) and paclitaxel (PTXL) to produce mono drug-loaded GEF-CSCaCO3NP, PTXL-CSCaCO3NP, and dual drug-loaded GEF-PTXL-CSCaCO3NP without usage of toxic chemicals. Fourier-transform infrared spectroscopy (FTIR) results reveal that the drugs are bound to CSCaCO3NP. Scanning electron microscopy studies reveal that the CSCaCO3NP, GEF-CSCaCO3NP, PTXL-CSCaCO3NP, and GEF-PTXL-CSCaCO3NP are almost spherical nanoparticles, with a diameter of 63.9 ± 22.3, 83.9 ± 28.2, 78.2 ± 26.4, and 87.2 ± 26.7 (nm), respectively. Dynamic light scattering (DLS) and N2 adsorption-desorption experiments revealed that the synthesized nanoparticles are negatively charged and mesoporous, with surface areas ranging from ~8 to 10 (m2/g). Powder X-ray diffraction (PXRD) confirms that the synthesized nanoparticles are aragonite. The CSCaCO3NP show excellent alkalinization property in plasma simulating conditions and greater solubility in a moderately acidic pH medium. The release of drugs from the nanoparticles showed zero order kinetics with a slow and sustained release. Therefore, the physico-chemical characteristics and in vitro findings suggest that the drug loaded CSCaCO3NP represent a promising drug delivery system to deliver GEF and PTXL against breast cancer.
Collapse
|