1
|
Mahajan M, Kumar S, Gaur J, Kaushal S, Dalal J, Singh G, Misra M, Ahlawat DS. Green synthesis of ZnO nanoparticles using Justicia adhatoda for photocatalytic degradation of malachite green and reduction of 4-nitrophenol. RSC Adv 2025; 15:2958-2980. [PMID: 39881999 PMCID: PMC11775505 DOI: 10.1039/d4ra08632e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025] Open
Abstract
Achieving the smallest crystallite/particle size of zinc oxide nanoparticles (ZnO NPs) reported to date, measuring 5.2/12.41 nm with Justicia adhatoda (J. adhatoda) leaf extract, this study introduces a facile green synthesis. Utilizing aqueous J. adhatoda leaf extract as both a reducing and stabilizing agent, the method leverages the plant's rich phytochemical composition to produce highly crystalline and morphologically controlled ZnO NPs. This precise particle size control highlights the effectiveness of the synthesis process in morphological tuning. The synthesized NPs were thoroughly characterized using XRD, UV-vis spectroscopy, FTIR, FESEM, and HRTEM, which collectively revealed superior crystallinity, controlled morphology, and unique surface properties conferred by phytochemical bio-capping. The photocatalytic performance of these biogenic ZnO NPs was evaluated for the degradation of two model pollutants: malachite green (MG), a synthetic dye, and 4-nitrophenol (4-NP), a toxic organic compound. The NPs exhibited exceptional photocatalytic efficiency, achieving 99.8% MG degradation within 180 minutes and demonstrating a rapid photocatalytic reduction of 4-NP to 4-aminophenol with a reaction rate constant of 0.245 min-1 under UV and sunlight irradiation. Mechanistic studies attributed this high performance to reactive oxygen species (ROS) generation and electron-hole pair interactions, supported by improved charge separation and high surface area. This work not only establishes the potential of J. adhatoda-mediated ZnO NPs in addressing persistent organic pollutants but also sets a benchmark for size-controlled NPs synthesis. By delivering scalable and eco-friendly water remediation technologies, this study advances green nanotechnology.
Collapse
Affiliation(s)
- Munisha Mahajan
- Department of Physics, Chandigarh University Gharuan Mohali 140413 India
| | - Sanjeev Kumar
- Department of Physics, Chandigarh University Gharuan Mohali 140413 India
| | - Jyoti Gaur
- School of Basic and Applied Sciences, RIMT University Mandi Gobindgarh 147301 India
| | - Sandeep Kaushal
- Regional Institute of Education, NCERT Ajmer Rajasthan 305004 India
| | - Jasvir Dalal
- Department of Physics, Rajdhani College, University of Delhi Delhi 110015 India
| | - Gurjinder Singh
- Department of Electrical and Electronics and Communication Engineering, DIT University Dehradun 248009 India
| | - Mrinmoy Misra
- Mechatronics Engineering Department, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur India
| | | |
Collapse
|
2
|
Vlăduț CM, Anastasescu C, Preda S, Mocioiu OC, Petrescu S, Pandele-Cusu J, Culita D, Bratan V, Balint I, Zaharescu M. Mn-doped ZnO nanopowders prepared by sol-gel and microwave-assisted sol-gel methods and their photocatalytic properties. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1283-1296. [PMID: 39502944 PMCID: PMC11535566 DOI: 10.3762/bjnano.15.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Although the microwave-assisted sol-gel method is quite frequently used for the preparation of oxide nanostructures, the synergism of the reaction pathways is not fully explained. However, state-of-the-art theoretical and practical results of high novelty can be achieved by continuously evaluating the as-synthesized materials. The present paper presents a comparative study of Mn-doped ZnO nanopowders prepared by both sol-gel and microwave-assisted sol-gel methods. The structural, morphological, and optical properties of the as-obtained powders were established and correlated with their newly proved functionality, namely, the ability to photogenerate distinct reactive oxygen species (·OH or O2 -) and to act as photoactive materials in aqueous media. The solar light-induced mineralization of oxalic acid by Mn-doped ZnO materials was clearly observed while similar amounts of generated CO2 were measured for both catalysts. These inexpensive semiconductor materials, which proved to be light-responsive, can be further used for developing water depollution technologies based on solar light energy.
Collapse
Affiliation(s)
- Cristina Maria Vlăduț
- Institute of Physical Chemistry ‘‘Ilie Murgulescu’’ of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Crina Anastasescu
- Institute of Physical Chemistry ‘‘Ilie Murgulescu’’ of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Silviu Preda
- Institute of Physical Chemistry ‘‘Ilie Murgulescu’’ of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Oana Catalina Mocioiu
- Institute of Physical Chemistry ‘‘Ilie Murgulescu’’ of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Simona Petrescu
- Institute of Physical Chemistry ‘‘Ilie Murgulescu’’ of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Jeanina Pandele-Cusu
- Institute of Physical Chemistry ‘‘Ilie Murgulescu’’ of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Dana Culita
- Institute of Physical Chemistry ‘‘Ilie Murgulescu’’ of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Veronica Bratan
- Institute of Physical Chemistry ‘‘Ilie Murgulescu’’ of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Ioan Balint
- Institute of Physical Chemistry ‘‘Ilie Murgulescu’’ of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Maria Zaharescu
- Institute of Physical Chemistry ‘‘Ilie Murgulescu’’ of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest, Romania
| |
Collapse
|
3
|
Wagh SS, Chougale AS, Survase AA, Patil RS, Naik N, Naushad M, Pathan HM. Rapid photocatalytic dye degradation, enhanced antibacterial and antifungal activities of silver stacked zinc oxide garnished on carbon nanotubes. Sci Rep 2024; 14:14045. [PMID: 38890495 PMCID: PMC11189508 DOI: 10.1038/s41598-024-64746-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
A composite of Zinc oxide loaded with 5-weight % silver decorated on carbon nanotubes (Ag-loaded ZnO: CNT) was synthesized using a simple refluxed chemical method. The influence of deviation in the weight % of carbon nanotube loading on photocatalytic dye degradation (methylene blue and rose bengal) and antibiotic (antimicrobial and antifungal) performance was investigated in this study. The light capture ability of Ag-loaded ZnO:CNT in the visible region was higher in photocatalytic activity than that of Ag-loaded ZnO and ZnO:CNT. The bandgap of the Ag-loaded ZnO: CNT was tuned owing to the surface plasmon resonance effect. The photocatalytic degradation investigations were optimized by varying the wt% in CNTs, pH of dye solution, concentration of the dye solution, and amount of catalytic dose. Around 100% photocatalytic efficiency in 2 min against MB dye was observed for Ag doped ZnO with 10 wt% CNT composite at pH 9, at a rate constant 1.48 min-1. Bipolaris sorokiniana fungus was first time tested against a composite material, which demonstrated optimum fungal inhibition efficiency of 48%. They were also tested against the bacterial strains Staphylococcus aureus, Bacillus cerius, Proteus vulgaris, and Salmonella typhimurium, which showed promising antibacterial activity compared to commercially available drugs. The composite of Ag doped ZnO with 5 wt% CNT has shown competitive zone inhibition efficacy of 21.66 ± 0.57, 15.66 ± 0.57, 13.66 ± 0.57 against bacterial strains Bacillus cerius, Proteus vulgaris, and Salmonella typhimurium which were tested for the first time against Ag-loaded ZnO:CNT.
Collapse
Affiliation(s)
- Snehal S Wagh
- Department of Polytechnic, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra, 411038, India
- PSGVPM's ASC College, Shahada, Maharashtra, 425409, India
| | - Akanksha S Chougale
- Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Avinash A Survase
- Department of Microbiology, Rayat Institute of Research and Development, Satara, Maharashtra, 415001, India
| | | | - Nithesh Naik
- Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Mu Naushad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Habib M Pathan
- Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| |
Collapse
|
4
|
Xu M, Gao C, Zhang X, Liang X, Hu Y, Wang F. Development of SDS-Modified PbO 2 Anode Material Based on Ti 3+ Self-Doping Black TiO 2NTs Substrate as a Conductive Interlayer for Enhanced Electrocatalytic Oxidation of Methylene Blue. Molecules 2023; 28:6993. [PMID: 37836836 PMCID: PMC10574806 DOI: 10.3390/molecules28196993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/23/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
Efficient and stable electrode materials are urgently required for wastewater treatment in the electrocatalytic degradation of toxic and refractory organic pollutants. Ti3+ self-doping black TiO2 nanotube arrays (Ti/B-TiO2-NTs) as an interlayer were used for preparing a novel PbO2 electrode via an electrochemical reduction technology, and a sodium dodecyl sulfate (SDS)-modified PbO2 catalytic layer was successfully achieved via an electrochemical deposition technology. The physicochemical characterization tests showed that the Ti/B-TiO2-NTs/PbO2-SDS electrodes have a denser surface and finer grain size with the introduction of Ti3+ in the interlayer of Ti/TiO2-NTs and the addition of SDS in the active layer of PbO2. The electrochemical characterization results showed that the Ti3+ self-doping black Ti/TiO2-NTs/PbO2-SDS electrode had higher oxygen evolution potential (2.11 V vs. SCE), higher electrode stability, smaller charge-transfer resistance (6.74 Ω cm-2), and higher hydroxyl radical production activity, leading to it possessing better electrocatalytic properties. The above results indicated that the physicochemical and electrochemical characterization of the PbO2 electrode were all enhanced significantly with the introduction of Ti3+ and SDS. Furthermore, the Ti/B-TiO2-NTs/PbO2-SDS electrodes displayed the best performance on the degradation of methylene blue (MB) in simulated wastewater via bulk electrolysis. The removal efficiency of MB and the chemical oxygen demand (COD) could reach about 99.7% and 80.6% under the optimal conditions after 120 min, respectively. The pseudo-first-order kinetic constant of the Ti/B-TiO2-NTs/PbO2-SDS electrode was 0.03956 min-1, which was approximately 3.18 times faster than that of the Ti/TiO2-NTs/PbO2 electrode (0.01254 min-1). In addition, the Ti/B-TiO2-NTs/PbO2-SDS electrodes showed excellent stability and reusability. The degradation mechanism of MB was explored via the experimental identification of intermediates. In summary, the Ti3+ self-doping black Ti/TiO2-NTs/PbO2-SDS electrode is a promising electrode in treating wastewater.
Collapse
Affiliation(s)
- Mai Xu
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232038, China; (M.X.); (X.Z.); (X.L.)
| | - Chunli Gao
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China;
| | - Xiaoyan Zhang
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232038, China; (M.X.); (X.Z.); (X.L.)
| | - Xian Liang
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232038, China; (M.X.); (X.Z.); (X.L.)
| | - Yunhu Hu
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232038, China; (M.X.); (X.Z.); (X.L.)
| | - Fengwu Wang
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan 232038, China; (M.X.); (X.Z.); (X.L.)
| |
Collapse
|
5
|
Singh K, Nancy, Bhattu M, Singh G, Mubarak NM, Singh J. Light-absorption-driven photocatalysis and antimicrobial potential of PVP-capped zinc oxide nanoparticles. Sci Rep 2023; 13:13886. [PMID: 37620547 PMCID: PMC10449794 DOI: 10.1038/s41598-023-41103-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023] Open
Abstract
Toxic dyes in water bodies and bacterial pathogens pose serious global challenges to human health and the environment. Zinc oxide nanoparticles (ZnO NPs) demonstrate remarkable photocatalytic and antibacterial potency against reactive dyes and bacterial strains. In this work, PVP-ZnO NPs have been prepared via the co-precipitation method using polyvinylpyrrolidone (PVP) as a surfactant. The NPs' microstructure and morphology were studied using X-ray diffraction (XRD), having a size of 22.13 nm. High-resolution transmission electron microscope (HR-TEM) and field emission scanning electron microscopy (FESEM) analysis showed spherical-shaped PVP-ZnO NPs with sizer ranging from 20 to 30 nm. Fourier Transform Infrared Spectroscopy (FT-IR) confirmed the hybrid nature of the NPs, and UV-Vis spectroscopy showed an absorption peak at 367 nm. The PVP-ZnO NPs exhibited high photocatalytic activity, achieving 88% and nearly 95% degradation of reactive red-141 azo dye with 10 mg and 20 mg catalyst dosages, respectively. The antibacterial properties of the NPs were demonstrated against Escherichia coli and Bacillus subtilis, with inhibition zones of 24 mm and 20 mm, respectively. These findings suggest that PVP-ZnO NPs can be effectively used for water treatment, targeting both dye and pathogenic contaminants.
Collapse
Affiliation(s)
- Karanpal Singh
- Department of Electronics Engineering, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Nancy
- Department of Biotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Monika Bhattu
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Gurjinder Singh
- Department of Electronics Engineering, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India.
- Department of Electrical and Electronics & Communication Engineering, DIT University, Dehradun, Uttarakhand, 248009, India.
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India.
| |
Collapse
|
6
|
Ji X, Li C, Liu J, Zhang T, Yang Y, Yu R, Luo X. Controlled Synthesis and Visible-Light-Driven Photocatalytic Activity of BiOBr Particles for Ultrafast Degradation of Pollutants. Molecules 2023; 28:5558. [PMID: 37513430 PMCID: PMC10384163 DOI: 10.3390/molecules28145558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
For the purpose of regulating the visible-light-driven photocatalytic properties of photocatalysts, we selected BiOBr as the research target and various routes were used. Herein, via the use of a hydrothermal method with various solvents, BiOBr particles with controllable morphology and photocatalytic activities are obtained. In particular, through changing the volume ratio of ethylene glycol (EG) to ethanol (EtOH), BiOBr compounds possess microspheres, in which samples synthesized by using EG:EtOH = 1:2 have the highest photocatalytic activity, and can completely decompose RhB under visible light irradiation within 14 min. Furthermore, we also used different volume ratios of EG and H2O reaction solvents to prepare BiOBr particles so as to further improve its pollutant removal ability. When the volume ratio of EG to H2O is 1:1, the synthesized BiOBr particles have the best photocatalytic activity, and RhB can be degraded in only 10 min upon visible light irradiation. Aside from the reaction solvent, the impact of sintering temperature on the photocatalytic properties of BiOBr particles is also explored, where its pollutant removal capacities are restrained due to the reduced specific surface area. Additionally, the visible-light-triggered photocatalytic mechanism of BiOBr particles is determined by h+, ·OH and ·O2- active species.
Collapse
Affiliation(s)
- Xiaohui Ji
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Shaanxi Province Key Laboratory of Catalysis, School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chen Li
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Shaanxi Province Key Laboratory of Catalysis, School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Junhai Liu
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Shaanxi Province Key Laboratory of Catalysis, School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Tianlei Zhang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- Shaanxi Province Key Laboratory of Catalysis, School of Chemistry and Environmental Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Yue Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| | - Ruijin Yu
- College of Chemistry & Pharmacy, Northwest A&F University, Xianyang 712100, China
| | - Xuegang Luo
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621010, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
7
|
Farooq U, Qureshi AK, Noor H, Farhan M, Khan ME, Hamed OA, Bashiri AH, Zakri W. Plant Extract-Based Fabrication of Silver Nanoparticles and Their Effective Role in Antibacterial, Anticancer, and Water Treatment Applications. PLANTS (BASEL, SWITZERLAND) 2023; 12:2337. [PMID: 37375962 DOI: 10.3390/plants12122337] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Ammi visnaga is a biennial or annual herbaceous plant belonging to the family Apiaceae. For the first time, silver nanoparticles were synthesized using an extract of this plant. Biofilms are a rich source of many pathogenic organisms and, thus, can be the genesis of various disease outbreaks. In addition, the treatment of cancer is still a critical drawback for mankind. The primary purpose of this research work was to comparatively analyze antibiofilms against Staphylococcus aureus, photocatalytic activity against Eosin Y, and in vitro anticancer activity against the HeLa cell line of silver nanoparticles and Ammi visnaga plant extract. The systematic characterization of synthesized nanoparticles was carried out using UV-Visible spectroscopy (UV-Vis), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM), dynamic light scattering (DLS), zeta potential, and X-ray diffraction microscopy (XRD). The initial characterization was performed with UV-Vis spectroscopy, where a peak appeared at 435 nm, which indicated the SPR band of the silver nanoparticles. AFM and SEM were performed to determine the morphology and shape of the nanoparticles, while EDX confirmed the presence of Ag in the spectra. The crystalline character of the silver nanoparticles was concluded with XRD. The synthesized nanoparticles were then subjected to biological activities. The antibacterial activity was evaluated by determining the inhibition of the initial biofilm formation with Staphylococcus aureus using a crystal violet assay. The response of the AgNPs against cellular growth and biofilm formation was found to be dose dependent. Green-synthesized nanoparticles showed 99% inhibition against biofilm and bacteria, performed excellent anticancer assay with an IC50 concentration of 17.1 ± 0.6 µg/mL and 100% inhibition, and photodegradation of the toxic organic dye Eosin Y up to 50%. Moreover, the effect of the pH and dosage of the photocatalyst was also measured to optimize the reaction conditions and maximum photocatalytic potential. Therefore, synthesized silver nanoparticles can be used in the treatment of wastewater contaminated with toxic dyes, pathogenic biofilms, and the treatment of cancer cell lines.
Collapse
Affiliation(s)
- Umar Farooq
- Department of Chemistry, The Islamia University of Bahawalpur, Baghdad-ul-Jadeed Campus, Bahawalpur 63100, Pakistan
| | | | - Hadia Noor
- Centre of Excellence in Solids State Physics, University of the Punjab, Quaid Azam Campus, Lahore 54590, Pakistan
| | - Muhammad Farhan
- Centre of Excellence in Solids State Physics, University of the Punjab, Quaid Azam Campus, Lahore 54590, Pakistan
| | - Mohammad Ehtisham Khan
- Department of Chemical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Osama A Hamed
- Department of Mechanical Engineering Technology, College of Applied Industrial Technology, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdullateef H Bashiri
- Department of Mechanical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| | - Waleed Zakri
- Department of Mechanical Engineering, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
8
|
Aljuaid A, Almehmadi M, Alsaiari AA, Allahyani M, Abdulaziz O, Alsharif A, Alsaiari JA, Saih M, Alotaibi RT, Khan I. g-C 3N 4 Based Photocatalyst for the Efficient Photodegradation of Toxic Methyl Orange Dye: Recent Modifications and Future Perspectives. Molecules 2023; 28:molecules28073199. [PMID: 37049963 PMCID: PMC10096294 DOI: 10.3390/molecules28073199] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
Industrial effluents containing dyes are the dominant pollutants, making the drinking water unfit. Among the dyes, methylene orange (MO) dye is mutagenic, carcinogenic and toxic to aquatic organisms. Therefore, its removal from water bodies through effective and economical approach is gaining increased attention in the last decades. Photocatalytic degradation has the ability to convert economically complex dye molecules into non-toxic and smaller species via redox reactions, by using photocatalysts. g-C3N4 is a metal-free n-type semiconductor, typical nonmetallic and non-toxici polymeric photocatalyst. It widely used in photocatalytic materials, due to its easy and simple synthesis, fascinating electronic band structure, high stability and abundant availability. As a photocatalyst, its major drawbacks are its limited efficiency in separating photo-excited electron-hole pairs, high separated charge recombination, low specific surface area, and low absorption coefficient. In this review, we report the recent modification strategies adopted for g-C3N4 for the efficient photodegradation of MO dye. The different modification approaches, such as nanocomposites and heterojunctions, as well as doping and defect introductions, are briefly discussed. The mechanism of the photodegradation of MO dye by g-C3N4 and future perspectives are discussed. This review paper will predict strategies for the fabrication of an efficient g-C3N4-based photocatalyst for the photodegradation of MO dye.
Collapse
Affiliation(s)
- Abdulelah Aljuaid
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Osama Abdulaziz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Abdulaziz Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Jawaher Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Magdi Saih
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Rema Turki Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Idrees Khan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
9
|
Advances in Semiconductor-Based Nanocomposite Photo(electro)catalysts for Nitrogen Reduction to Ammonia. Molecules 2023; 28:molecules28062666. [PMID: 36985636 PMCID: PMC10057858 DOI: 10.3390/molecules28062666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Photo(electro)catalytic nitrogen fixation technology is a promising ammonia synthesis technology using clean solar and electric energy as the driving energy. Abundant nitrogen and water as raw materials uphold the principle of green and sustainable development. However, the generally low efficiency of the nitrogen reduction reaction has seriously restricted the application and development of this technology. The paper introduces the nitrogen reduction process and discusses the main challenges and differences in the current photo(electro)catalytic nitrogen fixation systems. It focuses on promoting the adsorption and activation of N2 and the resolution and diffusion of NH3 generated. In recent years, reviews of the modification strategies of semiconductor materials in light of the typical cases of nitrogen fixation have been reported in the literature. Finally, the future development trend of this field is analyzed and prospected.
Collapse
|
10
|
Mohapatra L, Cheon D, Yoo SH. Carbon-Based Nanomaterials for Catalytic Wastewater Treatment: A Review. Molecules 2023; 28:molecules28041805. [PMID: 36838793 PMCID: PMC9959675 DOI: 10.3390/molecules28041805] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Carbon-based nanomaterials (CBM) have shown great potential for various environmental applications because of their physical and chemical properties. The unique hybridization properties of CBMs allow for the tailored manipulation of their structures and morphologies. However, owing to poor solar light absorption, and the rapid recombination of photogenerated electron-hole pairs, pristine carbon materials typically have unsatisfactory photocatalytic performances and practical applications. The main challenge in this field is the design of economical, environmentally friendly, and effective photocatalysts. Combining carbonaceous materials with carbonaceous semiconductors of different structures results in unique properties in carbon-based catalysts, which offers a promising approach to achieving efficient application. Here, we review the contribution of CBMs with different dimensions, to the catalytic removal of organic pollutants from wastewater by catalyzing the Fenton reaction and photocatalytic processes. This review, therefore, aims to provide an appropriate direction for empowering improvements in ongoing research work, which will boost future applications and contribute to overcoming the existing limitations in this field.
Collapse
Affiliation(s)
- Lagnamayee Mohapatra
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Dabin Cheon
- Department of Applied Plasma & Quantum Beam Engineering, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
| | - Seung Hwa Yoo
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
- Department of Applied Plasma & Quantum Beam Engineering, Jeonbuk National University, Jeonju-si 54896, Republic of Korea
- Correspondence:
| |
Collapse
|
11
|
Gatou MA, Lagopati N, Vagena IA, Gazouli M, Pavlatou EA. ZnO Nanoparticles from Different Precursors and Their Photocatalytic Potential for Biomedical Use. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:122. [PMID: 36616030 PMCID: PMC9823729 DOI: 10.3390/nano13010122] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 05/26/2023]
Abstract
Semiconductor photocatalysts, particularly ZnO nanoparticles, were synthesized via the precipitation method using four different precursors (zinc acetate/zinc nitrate/zinc sulfate/zinc chloride) and compared, according to their optical, structural, photocatalytic, and anticancer properties. The materials were characterized via X-ray Diffraction method (XRD), micro-Raman, Fourier Transform Infrared Spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET), Dynamic Light Scattering (DLS), and Field Emission Scanning Electron Microscope (FESEM) analysis. Photocatalysis was conducted under UV and visible light irradiation, using Rhodamine B as the organic pollutant. It was observed that the highest photocatalysis efficiency was obtained by the nanoparticles synthesized from the zinc acetate used as precursor material. A cell-dependent anticancer efficiency of the tested ZnO nanoparticles was also observed, that was also attributed to the different precursors and the synthesis method, revealing that the nanoparticles that were synthesized from zinc acetate were more bioactive among the four tested precursors. Overall, the data revealed that both the enhanced photocatalytic and biological activity of ZnO nanoparticles derived from zinc acetate precursor could be attributed to the reduced crystalline size, increased surface area, as well as the observed hexagonal crystalline morphology.
Collapse
Affiliation(s)
- Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| | - Nefeli Lagopati
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece
| |
Collapse
|
12
|
Alhadhrami A, Mohamed GG, Sadek AH, Ismail SH, Ebnalwaled AA, Almalki ASA. Behavior of Silica Nanoparticles Synthesized from Rice Husk Ash by the Sol-Gel Method as a Photocatalytic and Antibacterial Agent. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8211. [PMID: 36431696 PMCID: PMC9693224 DOI: 10.3390/ma15228211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Silica nanoparticles (SiO2 NPs) are one of the most well-studied inorganic nanoparticles for many applications. They offer the advantages of tunable size, biocompatibility, porous structure, and larger surface area. Thus, in this study, a high yield of SiO2 NPs was produced via the chemical treatment of rice husk ash by the sol-gel method. Characteristics of the prepared SiO2 NPs were validated using different characterization techniques. Accordingly, the phase, chemical composition, morphological, and spectroscopic properties of the prepared sample were studied. The average particle size of the SiO2 NPs was found to be approximately 60-80 nm and the surface area was 78.52 m²/g. The prepared SiO2 NPs were examined as photocatalysts for the degradation of methyl orange (MO) dye under UV irradiation. It was found that the intensity of the characteristic absorption band of MO decreased gradually with exposure time increasing, which means the successful photodegradation of MO by SiO2 NPs. Moreover, the antibacterial activity of obtained SiO2 NPs was investigated by counting the coliform bacteria in the surface water using the most probable number (MPN) index method. The results revealed that the MPN of coliform bacteria untreated and treated by SiO2 NPs was estimated to be 170 CFU/100 mL and 10 CFU/100 mL, respectively, resulting in bacterial growth inhibition of 94.12%.
Collapse
Affiliation(s)
- A. Alhadhrami
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Nanoscience Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Alexandria 21934, Egypt
| | - Ahmed H. Sadek
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Campus, Giza 12588, Egypt
- Zewail City of Science, Technology and Innovation, Giza 12578, Egypt
| | - Sameh H. Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Campus, Giza 12588, Egypt
| | - A. A. Ebnalwaled
- Electronics & Nano Devices (END) Lab, Physics Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Abdulraheem S. A. Almalki
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
13
|
Hydrothermal Synthesis of Cadmium Sulfide Photocatalyst for Detoxification of Azo Dyes and Ofloxacin Antibiotic in Wastewater. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227944. [PMID: 36432045 PMCID: PMC9692879 DOI: 10.3390/molecules27227944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
The complete detoxification of harmful dyes and antibiotics from aqueous solution is essential for environmental remediation. The present work focuses on a facile hydrothermal synthesis of a cadmium sulfide (CdS) photocatalyst using thioacetamide as a sulfur source. The synthesized CdS showed a hexagonal phase with an energy gap of 2.27 eV, suggesting the promising visible-light-responsive semiconducting photocatalyst. The photoactivity of the prepared CdS was investigated by evaluating the degradation of the Reactive red 141 (RR141) dye, Congo red (CR) dye, and ofloxacin (OFL) antibiotic. After only 180 min of solar light illumination, a high performance of 98%, 97%, and 87% toward degradation of RR141, CR, and OFL was obtained. The photodegradation of the pollutants agrees well with the first-order kinetic model. The rate constant of 0.055 min-1, 0.040 min-1, and 0.026 min-1, respectively, was reported toward degradation of RR141, CR, and OFL. Photogenerated holes and hydroxyl radicals play a vital role in removing toxic organic contaminants. The chemical stability of the prepared CdS was also confirmed. The synthesized CdS photocatalyst still maintains high photocatalytic performance even after five consecutive cycles of use, indicating its excellent cycling ability. The present research shows a facile route to fabricate a CdS photocatalyst to completely detoxify harmful organic pollutants, including dyes and antibiotics, in the environment.
Collapse
|
14
|
Alrebdi TA, Rezk RA, Alghamdi SM, Ahmed HA, Alkallas FH, Pashameah RA, Mostafa AM, Mwafy EA. Photocatalytic Performance Improvement by Doping Ag on ZnO/MWCNTs Nanocomposite Prepared with Pulsed Laser Ablation Method Based Photocatalysts Degrading Rhodamine B Organic Pollutant Dye. MEMBRANES 2022; 12:877. [PMID: 36135895 PMCID: PMC9505665 DOI: 10.3390/membranes12090877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
ZnO/MWCNTs nanocomposite has significant potential in photocatalytic and environmental treatment. Unfortunately, its photocatalytic efficacy is not high enough due to its poor light absorbance and quick recombination of photo-generated carriers, which might be improved by incorporation with noble metal nanoparticles. Herein, Ag-doped ZnO/MWCNTs nanocomposite was prepared using a pulsed laser ablation approach in the liquid media and examined as a degradable catalyst for Rhodamine B. (RhB). Different techniques were used to confirm the formation of the nanostructured materials (ZnO and Ag) and the complete interaction between them and MWCNTs. X-ray diffraction pattern revealed the hexagonal wurtzite crystal structure of ZnO and Ag. Additionally, UV-visible absorption spectrum was used to study the change throughout the shift in the transition energies, which affected the photocatalytic degradation. Furthermore, the morphological investigation by a scanning electron microscope showed the successful embedding and decoration of ZnO and Ag on the outer surface of CNTs. Moreover, the oxidation state of the formed final nanocomposite was investigated via an X-ray photoelectron spectrometer. After that, the photocatalytic degradations of RhB were tested using the prepared catalysts. The results showed that utilizing Ag significantly impacted the photo degradation of RhB by lowering the charge carrier recombination, leading to 95% photocatalytic degradation after 12 min. The enhanced photocatalytic performance of the produced nanocomposite was attributed to the role of the Ag dopant in generating more active oxygen species. Moreover, the impacts of the catalyst amount, pH level, and contact time were discussed.
Collapse
Affiliation(s)
- Tahani A. Alrebdi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Reham A. Rezk
- Higher Technological Institute, 10th of Ramadan City, 6th of October Branch, 3rd Zone, 7th Section, 6th of October City, 10th of Ramadan 44629, Egypt
| | - Shoug M. Alghamdi
- Department of Physics, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
- Chemistry Department, College of Sciences, Taibah University, Yanbu 46423, Saudi Arabia
| | - Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Rami Adel Pashameah
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah 24230, Saudi Arabia
| | - Ayman M. Mostafa
- Spectroscopy Department, Physics Division, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
| | - Eman A. Mwafy
- Laser Technology Unit, Center of Excellent for Advanced Science, National Research Centre, 33 El Bohouth st. (Former El Tahrir st.), Dokki, Giza 12622, Egypt
- Physical Chemistry Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
15
|
Sebastian N, Yu WC, Balram D. Ultrasensitive Electrochemical Detection and Plasmon-Enhanced Photocatalytic Degradation of Rhodamine B Based on Dual-Functional, 3D, Hierarchical Ag/ZnO Nanoflowers. SENSORS 2022; 22:s22135049. [PMID: 35808543 PMCID: PMC9269782 DOI: 10.3390/s22135049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 01/25/2023]
Abstract
The sensitive detection and degradation of synthetic dyes are pivotal to maintain safety owing to the adverse side effects they impart on living beings. In this work, we developed a sensitive electrochemical sensor for the nanomolar-level detection of rhodamine B (RhB) using a dual-functional, silver-decorated zinc oxide (Ag/ZnO) composite-modified, screen-printed carbon electrode. The plasmon-enhanced photocatalytic degradation of organic pollutant RhB was also performed using this nanocomposite prepared by embedding different weight percentages (1, 3, and 5 wt%) of Ag nanoparticles on the surface of a three-dimensional (3D), hierarchical ZnO nanostructure based on the photoreduction approach. The structure and morphology of an Ag/ZnO nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental mapping, ultraviolet-visible (UV-vis) spectroscopy, and X-ray diffraction (XRD). The electrochemical sensor exhibited a very high sensitivity of 151.44 µAµM-1cm-2 and low detection limit of 0.8 nM towards RhB detection. The selectivity, stability, repeatability, reproducibility, and practical feasibility were also analyzed to prove their reliability. Furthermore, the photocatalysis results revealed that 3 wt% of the Ag/ZnO hybrid nanostructure acquired immense photostability, reusability, and 90.5% degradation efficiency under visible light. Additionally, the pseudo-first-order rate constant of Ag-3/ZnO is 2.186 min-1 suggested promising activity in visible light photocatalysis.
Collapse
Affiliation(s)
- Neethu Sebastian
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan;
| | - Wan-Chin Yu
- Institute of Organic and Polymeric Materials, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan;
- Correspondence:
| | - Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan;
| |
Collapse
|
16
|
Photocatalytic Activity of Orchid-Flower-Shaped ZnO Nanoparticles, toward Cationic and Anionic Dye Degradation under Visible Light, and Its Anti-Cancer Potential. COATINGS 2022. [DOI: 10.3390/coatings12070946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Orchid-flower-shaped ZnO nanomaterials were successfully synthesized via green synthesis and an eco-friendly approach using an aqueous extract of Lycium chinense fruit as a reducing and capping agent. The synthesized Lycium chinense orchid-flower-shaped ZnO (LC-ZnO/OF) nanoparticles (NPs) were characterized using different analytical methods through X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), photoelectron spectroscopy (XPS), and photoluminescence (PL). The FE-TEM analysis revealed the orchid flower shape of the nanoparticles, and the elemental composition was confirmed via XPS analysis. The photocatalytic activity of the nanoparticles was determined by the degrading cationic dye methylene blue (MB) and the anionic dye Eosin Y (EY) under visible light irradiation at (400 w) within 180 min time, where it showed a significant ability to degrade both cationic and anionic dye by almost 50%. The LC-ZnO/OF photocatalyst was also used to check the toxicity level in human cancer cells, where it exhibited remarkable cytotoxicity to the human lung cancer (A549 cell line) and human gastric adenocarcinoma hyperdiploid (AGS cell line). The present investigation suggests that LC-ZnO/OF has the potential photocatalytic ability to degrade toxic dye as well as have anti-cancer effects. These preliminary results suggest that LC-ZnO/OF could have a significant impact on the environmental and biomedical fields.
Collapse
|
17
|
Shelke HD, Machale AR, Survase AA, Pathan HM, Lokhande CD, Lokhande AC, Shaikh SF, Rana AUHS, Palaniswami M. Multifunctional Cu 2SnS 3 Nanoparticles with Enhanced Photocatalytic Dye Degradation and Antibacterial Activity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3126. [PMID: 35591460 PMCID: PMC9104045 DOI: 10.3390/ma15093126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023]
Abstract
We present a simplistic, ultrafast, and facile hydrothermal deposition of ternary Cu2SnS3 nanoparticles (CTS NPs). The fabricated CTS NPs show superior antimicrobial and photocatalytic activities. In the presence of UV-Visible illumination, methylene blue (MB) dye was studied for photocatalytic dye degradation activity of CTS NPs. Excellent efficiency is shown by incorporating CTS NPs to degrade MB dye. There is a ~95% decrease in the absorbance peak of the dye solution within 120 min. Similarly, CTS NPs tested against three bacterial strains, i.e., B. subtilis, S. aureus, P. vulgaris, and one fungal strain C. albicans, defining the lowest inhibitory concentration and zone of inhibition, revealed greater antimicrobial activity. Hence, it is concluded that the CTS NPs are photocatalytically and antimicrobially active and have potential in biomedicine.
Collapse
Affiliation(s)
- Harshad D. Shelke
- Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra, India; (H.D.S.); (H.M.P.)
| | - Archana R. Machale
- Solid State Physics Laboratory, Department of Physics, Yashwantrao Chavan Institute of Science, Satara 415001, Maharashtra, India;
| | - Avinash A. Survase
- Rayat Institute of Research and Development Center, Satara 415001, Maharashtra, India;
| | - Habib M. Pathan
- Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007, Maharashtra, India; (H.D.S.); (H.M.P.)
| | - Chandrakant D. Lokhande
- Centre for Interdisciplinary Research, D. Y. Patil Educational Society, Kolhapur 416006, Maharashtra, India
| | - Abhishek C. Lokhande
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates;
| | - Shoyebmohamad F. Shaikh
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Abu ul Hassan S. Rana
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Marimuthu Palaniswami
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC 3010, Australia;
| |
Collapse
|
18
|
Nunes MJ, Lopes A, Pacheco MJ, Ciríaco L. Visible-Light-Driven AO7 Photocatalytic Degradation and Toxicity Removal at Bi-Doped SrTiO 3. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2465. [PMID: 35407797 PMCID: PMC8999963 DOI: 10.3390/ma15072465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/23/2022]
Abstract
In this study, Bi-doped SrTiO3 perovskites (Sr1-xBixTiO3, x = 0, 0.03, 0.05, 0.07 and 0.1) were synthesized using the solid-state method, characterized, and tested as photocatalysts in the degradation of the azo dye acid orange 7 (AO7) under visible light. The perovskites were successfully synthesized, and XRD data showed a predominant, well-crystallized phase, belonging to the cubic perovskite symmetry. For the doped samples, a minority phase, identified as bismuth titanate, was detected. All doped samples exhibited improved photocatalytic activity under visible light, on the degradation of AO7 (10 mg L-1), when compared with the undoped SrTiO3, with an increase in relative Abs484 nm decay from 3.7% to ≥67.8% after 1 h, for a powder suspension of 0.2 g L-1. The best photocatalytic activity was exhibited by the Sr0.95Bi0.05TiO3 perovskite. Reusability studies showed no significant loss in photocatalytic activity under visible light. The final solutions showed no toxicity towards D. magna, proving the efficiency of Sr0.95Bi0.05TiO3 as a visible-light-driven photocatalyst to degrade both the AO7 dye as well as its toxic by-products. A degradation mechanism is proposed.
Collapse
Affiliation(s)
- Maria João Nunes
- Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marquês de D'Ávila e Bolama, 6200-001 Covilhã, Portugal
| | - Ana Lopes
- Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marquês de D'Ávila e Bolama, 6200-001 Covilhã, Portugal
| | - Maria José Pacheco
- Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marquês de D'Ávila e Bolama, 6200-001 Covilhã, Portugal
| | - Lurdes Ciríaco
- Fiber Materials and Environmental Technologies (FibEnTech-UBI), Universidade da Beira Interior, R. Marquês de D'Ávila e Bolama, 6200-001 Covilhã, Portugal
| |
Collapse
|
19
|
Fabrication of Nanoparticle/Polymer Composite Photocatalytic Membrane for Domestic Sewage In Situ Treatment. MATERIALS 2022; 15:ma15072466. [PMID: 35407799 PMCID: PMC8999259 DOI: 10.3390/ma15072466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
Abstract
Photocatalytic technology using semiconductor catalysts is a promising candidate for light-polluted water treatment. In the past decades, TiO2-related nanomaterials and photocatalytic devices have been applied for sewage ex-situ treatment. However, in situ photocatalytic technology using functional membranes is still needed for many large-scale outdoor scenarios. This work successfully fabricated a robust reusable photocatalytic membrane by firmly immobilizing TiO2 nanoparticles on polymer membranes, supported by various plastic substrates, through an industrial membrane blowing process. The as-fabricated photocatalytic membrane was fabricated by all low-cost and eco-friendly commercial materials and exhibited stable photocatalytic performance in domestic sewage in situ treatment in natural conditions. This work is expected to promote the photocatalytic membrane for practical application.
Collapse
|
20
|
Jiang HY, Qian J, Hou J, Tian M, Bai Y, Li C. High concentration of methyl orange elimination by targeted construction of an α-Bi 2O 3/Ph–CC–Cu Z-scheme. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01590k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We anchored Ph–CC–Cu onto the surface of α-Bi2O3 nanoparticles to directionally construct Z-scheme heterojunctions, which are significantly efficient for the elimination of methyl orange with high concentration (98 mg L−1) in waste water.
Collapse
Affiliation(s)
- Hai-Ying Jiang
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Jing Qian
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Jiawei Hou
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Meng Tian
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Yadi Bai
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| | - Chengbo Li
- Key Lab of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, and the Energy and Catalysis Hub, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, People's Republic of China
| |
Collapse
|
21
|
Náfrádi M, Alapi T, Farkas L, Bencsik G, Kozma G, Hernádi K. Wavelength Dependence of the Transformation Mechanism of Sulfonamides Using Different LED Light Sources and TiO 2 and ZnO Photocatalysts. MATERIALS (BASEL, SWITZERLAND) 2021; 15:49. [PMID: 35009197 PMCID: PMC8745830 DOI: 10.3390/ma15010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 05/04/2023]
Abstract
The comparison of the efficiency of the commercially available photocatalysts, TiO2 and ZnO, irradiated with 365 nm and 398 nm light, is presented for the removal of two antibiotics, sulfamethazine (SMT) and sulfamethoxypyridazine (SMP). The •OH formation rate was compared using coumarin, and higher efficiency was proved for TiO2 than ZnO, while for 1,4-benzoquinone in O2-free suspensions, the higher contribution of the photogenerated electrons to the conversion was observed for ZnO than TiO2, especially at 398 nm irradiation. An extremely fast transformation and high quantum yield of SMP in the TiO2/LED398nm process were observed. The transformation was fast in both O2 containing and O2-free suspensions and takes place via desulfonation, while in other cases, mainly hydroxylated products form. The effect of reaction parameters (methanol, dissolved O2 content, HCO3- and Cl-) confirmed that a quite rarely observed energy transfer between the excited state P25 and SMP might be responsible for this unique behavior. In our opinion, these results highlight that "non-conventional" mechanisms could occur even in the case of the well-known TiO2 photocatalyst, and the effect of wavelength is also worth investigating.
Collapse
Affiliation(s)
- Máté Náfrádi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (M.N.); (L.F.)
| | - Tünde Alapi
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (M.N.); (L.F.)
| | - Luca Farkas
- Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary; (M.N.); (L.F.)
| | - Gábor Bencsik
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary;
| | - Gábor Kozma
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, H-6720 Szeged, Hungary;
| | - Klára Hernádi
- Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, C/2-5 Building 209, H-3515 Miskolc-Egyetemvaros, Hungary;
| |
Collapse
|
22
|
Noman MT, Amor N, Ali A, Petrik S, Coufal R, Adach K, Fijalkowski M. Aerogels for Biomedical, Energy and Sensing Applications. Gels 2021; 7:264. [PMID: 34940324 PMCID: PMC8701306 DOI: 10.3390/gels7040264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 12/16/2022] Open
Abstract
The term aerogel is used for unique solid-state structures composed of three-dimensional (3D) interconnected networks filled with a huge amount of air. These air-filled pores enhance the physicochemical properties and the structural characteristics in macroscale as well as integrate typical characteristics of aerogels, e.g., low density, high porosity and some specific properties of their constituents. These characteristics equip aerogels for highly sensitive and highly selective sensing and energy materials, e.g., biosensors, gas sensors, pressure and strain sensors, supercapacitors, catalysts and ion batteries, etc. In recent years, considerable research efforts are devoted towards the applications of aerogels and promising results have been achieved and reported. In this thematic issue, ground-breaking and recent advances in the field of biomedical, energy and sensing are presented and discussed in detail. In addition, some other perspectives and recent challenges for the synthesis of high performance and low-cost aerogels and their applications are also summarized.
Collapse
Affiliation(s)
- Muhammad Tayyab Noman
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, 461 17 Liberec, Czech Republic;
| | - Nesrine Amor
- Department of Machinery Construction, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, 461 17 Liberec, Czech Republic;
| | - Azam Ali
- Department of Materials Engineering, Faculty of Textile Engineering, Technical University of Liberec, 461 17 Liberec, Czech Republic;
| | - Stanislav Petrik
- Department of Advanced Materials, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, 461 17 Liberec, Czech Republic; (S.P.); (K.A.); (M.F.)
| | - Radek Coufal
- Department of Science and Research, Faculty of Health Studies, Technical University of Liberec, 461 17 Liberec, Czech Republic;
| | - Kinga Adach
- Department of Advanced Materials, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, 461 17 Liberec, Czech Republic; (S.P.); (K.A.); (M.F.)
| | - Mateusz Fijalkowski
- Department of Advanced Materials, Institute for Nanomaterials, Advanced Technologies and Innovation (CXI), Technical University of Liberec, 461 17 Liberec, Czech Republic; (S.P.); (K.A.); (M.F.)
| |
Collapse
|