1
|
Rustembekkyzy K, Sabyr M, Kanafin YN, Khamkhash L, Atabaev TS. Microwave-assisted synthesis of ZnO structures for effective degradation of methylene blue dye under solar light illumination. RSC Adv 2024; 14:16293-16299. [PMID: 38769968 PMCID: PMC11103780 DOI: 10.1039/d4ra02451f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/11/2024] [Indexed: 05/22/2024] Open
Abstract
The presence of dyes in wastewater poses a high risk to both human health and the environment due to their potential toxicity and ecological impacts. Zinc(ii) oxide is a low-cost, non-toxic material that can serve as a sustainable and effective solution to the global water pollution crisis. In this study, we propose a facile one-step synthesis of various ZnO structures by microwave irradiation. The primary goal of this study was to explore the morphology-dependent photocatalytic activity of various ZnO structures, as well as the impact of interfering anions on the Methylene Blue (MB) photodegradation under solar light illumination. Photocatalytic activity studies show that the sample denoted as 0.56 M-ZnO with a sheet-like structure has remarkable catalytic activity under solar light illumination, reaching ∼96.6% degradation of 30 mL MB solution (3 × 10-5 M) within 40 minutes. The BET specific surface area and band gap of the optimal 0.56 M-ZnO sample were observed to be 12.42 m2 g-1 and 2.89 eV, respectively. It was shown that the presence of anions like Cl-, NO3-, and HCO3- can reduce the catalytic activity of 0.56 M-ZnO structure to some extent, although more than 70% MB degradation can still be obtained under neutral pH conditions. The superior catalytic efficacy observed in the 0.56 M-ZnO photocatalyst can be attributed to its improved crystallinity, large surface area, and enhanced production of hydroxyl radicals. The low-cost synthesis, combined with high photocatalytic activity collectively underscores the efficiency and practical usability of produced ZnO photocatalysts for dye degradation.
Collapse
Affiliation(s)
| | - Madi Sabyr
- Karagandy Bilim Innovation Lyceum Karagandy 100029 Kazakhstan
| | | | - Laura Khamkhash
- Department of Chemistry, Nazarbayev University Astana 010000 Kazakhstan
| | - Timur Sh Atabaev
- Department of Chemistry, Nazarbayev University Astana 010000 Kazakhstan
| |
Collapse
|
2
|
Ali W, Li Z, Bai L, Ansar MZ, Zada A, Qu Y, Shaheen S, Jing L. Controlled Synthesis of Ag-SnO2/α-Fe2O3 Nanocomposites for Improving Visible-Light Catalytic Activities of Pollutant Degradation and CO2 Reduction. Catalysts 2023. [DOI: 10.3390/catal13040696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
The key to developing highly active α-Fe2O3-based photocatalysts is to improve the charge separation and efficiently utilize the electrons with sufficient thermodynamic energy. Herein, α-Fe2O3 nanosheets (FO) were synthesized using a metal-ion-intervened hydrothermal method and then coupled with SnO2 nanosheets (SO) to obtain SO/FO nanocomposites. Subsequently, nanosized Ag was selectively loaded on SO using the photo-deposition method to result in the ternary Ag-SO/FO nanocomposites. The optimal nanocomposite could realize the efficient aerobic degradation of 2,4-dichlorophenol as a representative organic pollutant under visible-light irradiation (>420 nm), exhibiting nearly six-fold degradation rates of that for FO. Additionally, the Ag-SO/FO photocatalyst is also applicable to the visible-light degradation of other organic pollutants and even CO2 reduction. By using steady-state surface photovoltage spectroscopy, fluorescence spectroscopy, and electrochemical methods, the photoactivity enhancement of Ag-SO/FO is principally attributed to the improved charge separation by introducing SO as an electron platform for the high-energy-level electrons of FO. Moreover, nanosized Ag on SO functions as a cocatalyst to further improve the charge separation and facilitate the catalytic reduction. This work provides a feasible design strategy for narrow-bandgap semiconductor-based photocatalysts by combining an electron platform and a cocatalyst.
Collapse
Affiliation(s)
- Wajid Ali
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Ministry of Education, Harbin 150080, China
| | - Zhijun Li
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Ministry of Education, Harbin 150080, China
| | - Linlu Bai
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Ministry of Education, Harbin 150080, China
| | - Muhammad Zaka Ansar
- National Institute of Vacuum Science and Technology, Islamabad 45400, Pakistan
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Yang Qu
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Ministry of Education, Harbin 150080, China
| | - Shabana Shaheen
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Ministry of Education, Harbin 150080, China
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Ministry of Education, Harbin 150080, China
| |
Collapse
|
3
|
Bai X, Luan J, Song T, Sun H, Dai Y, Yu J, Tian H. Chitosan-Grafted Carbon Oxynitride Nanoparticles: Investigation of Photocatalytic Degradation and Antibacterial Activity. Polymers (Basel) 2023; 15:1688. [PMID: 37050302 PMCID: PMC10096967 DOI: 10.3390/polym15071688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/15/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
In this work, a series of chitosan (CS)-grafted carbon oxynitride (OCN) nanoparticles (denoted as CS-OCN) were successfully synthesized for the first time by thermal polycondensation and subsequent esterification. The structure and photocatalytic performance of CS-OCN nanoparticles were investigated. The XPS spectra of CS-OCN-3 showed the presence of amino bonds. The optimal photocatalytic degradation efficiency of the synthesized CS-OCN-3 could reach 94.3% within 390 min, while the photocurrent response intensity was about 150% more than that of pure OCN. The improved photocatalytic performance may be mainly attributed to the enhanced photogenerated carrier's separation and transportation and stronger visible light response after CS grafting. In addition, the inhibition diameter of CS-OCN-3 reached 23 mm against E. coli within 24 h under visible light irradiation, exhibiting excellent photocatalytic bactericidal ability. The results of bacterial inhibition were supported by absorbance measurements (OD600) studies of E. coli. In a word, this work provided a rational design of an efficient novel metal-free photocatalyst to remove bacterial contamination and accelerate the degradation of organic dyes.
Collapse
Affiliation(s)
- Xuemei Bai
- School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Jingmin Luan
- School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Tingting Song
- School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Haifeng Sun
- School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Yuhua Dai
- School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Jianxiang Yu
- School of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Huafeng Tian
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Liang YC, Sun WY. Enhanced photoactive performance of three-layer structured Ag/Cu 2O/TiO 2 composites with tunable crystal microstructures. CrystEngComm 2023. [DOI: 10.1039/d3ce00027c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Ag particle-decorated Cu2O/TiO2 composite films effectively photodegrade MO solution under irradiation.
Collapse
Affiliation(s)
- Yuan-Chang Liang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wei-Yang Sun
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|