1
|
Wang R, Ma W, Feng Q, Yuan Y, Geng C, Xu S. Toward Ultra-stable Barrier-free Quantum Dots-Color Conversion Film via Zinc Phenylbutyrate Modification. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18790-18799. [PMID: 40066937 DOI: 10.1021/acsami.5c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Quantum dot (QD) color conversion films (CCFs) hold significant promise for advancing display technologies with their superior color performance and efficiency. However, achieving long-term stability in QD-CCFs without additional air-barrier film coatings remains a challenge. Here, we develop a surface passivation strategy using zinc phenylbutyrate (Zn(PA)2) to modify QDs through a trioctylphosphine-mediated surface reaction, which results in the selective capping of surface sulfur atoms by zinc-monophenylbutyrate. Density functional theory calculations and multiple-washing tests reveal robust -ZnPA binding that effectively passivates the QD surface and enhances resistance to environmental conditions. Moreover, the phenylbutyrate groups enhance the solubility of QDs in styrene, facilitating their copolymerization to create QD-PS CCFs with high QD concentration, excellent light uniformity, and long-term stability even after 500 h of water immersion and photoaging. CCFs incorporating mixtures of green and red QDs achieve a wide color gamut exceeding 120% of the NTSC standard, demonstrating the advantage of this approach for enhancing the color performance of the QD-CCFs.
Collapse
Affiliation(s)
- Runchi Wang
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Wei Ma
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qian Feng
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yaqian Yuan
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Chong Geng
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Shu Xu
- School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
2
|
Zaini MS, Liew JYC, Paiman S, Tee TS, Kamarudin MA. Solvent-Dependent Photoluminescence Emission and Colloidal Stability of Carbon Quantum dots from Watermelon Peels. J Fluoresc 2025; 35:245-256. [PMID: 38038875 DOI: 10.1007/s10895-023-03528-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023]
Abstract
Waste peels are considered an environmental burden and typically disposed in landfills. The aim of this study was to investigate the effects of various solvents on the luminescence properties of carbon quantum dots (CQDs). Watermelon peels were recycled and reuse as precursors for the synthesis of biomass CQDs via a green carbonization method. The colloidal stability, surface charge, and particle size were characterized using zeta potential and dynamic light scattering (DLS). DLS revealed that the size of the CQDs was approximately 5.80 ± 0.4 nm to 9.74 ± 0.8 nm. The high-resolution transmission electron microscopy (HRTEM) results demonstrated a correlation with the DLS results. The optical properties were characterized by photoluminescence (PL) and UV-Visible (UV-Vis) spectroscopy. PL measurements at different excitation wavelengths revealed that the CQDs emissions were influenced by the polarity of the solvents. Meanwhile, the Fourier transform infra-red (FTIR) results showed the presence of oxygen-containing groups on the surface of the CQDs. These results deepen our understanding of the solvent-dependent behavior and colloidal stability of the CQDs.
Collapse
Affiliation(s)
- Muhammad Safwan Zaini
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Seri Kembangan, 43400, Malaysia
| | - Josephine Ying Chyi Liew
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Seri Kembangan, 43400, Malaysia
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Seri Kembangan, 43400, Malaysia
| | - Suriati Paiman
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Seri Kembangan, 43400, Malaysia
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Seri Kembangan, 43400, Malaysia
| | - Tan Sin Tee
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Seri Kembangan, 43400, Malaysia
| | - Mazliana Ahmad Kamarudin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor Darul Ehsan, Seri Kembangan, 43400, Malaysia.
| |
Collapse
|
3
|
Malashin I, Daibagya D, Tynchenko V, Nelyub V, Borodulin A, Gantimurov A, Selyukov A, Ambrozevich S, Smirnov M, Ovchinnikov O. Modeling Temperature-Dependent Photoluminescence Dynamics of Colloidal CdS Quantum Dots Using Long Short-Term Memory (LSTM) Networks. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5056. [PMID: 39459761 PMCID: PMC11509628 DOI: 10.3390/ma17205056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024]
Abstract
This study addresses the challenge of modeling temperature-dependent photoluminescence (PL) in CdS colloidal quantum dots (QD), where PL properties fluctuate with temperature, complicating traditional modeling approaches. The objective is to develop a predictive model capable of accurately capturing these variations using Long Short-Term Memory (LSTM) networks, which are well suited for managing temporal dependencies in time-series data. The methodology involved training the LSTM model on experimental time-series data of PL intensity and temperature. Through numerical simulation, the model's performance was assessed. Results demonstrated that the LSTM-based model effectively predicted PL trends under different temperature conditions. This approach could be applied in optoelectronics and quantum dot-based sensors for enhanced forecasting capabilities.
Collapse
Affiliation(s)
- Ivan Malashin
- Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Daniil Daibagya
- Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vadim Tynchenko
- Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Vladimir Nelyub
- Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia
- Scientific Department, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Aleksei Borodulin
- Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Andrei Gantimurov
- Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Alexandr Selyukov
- Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Sergey Ambrozevich
- Center for Continuing Education, Bauman Moscow State Technical University, 105005 Moscow, Russia
| | - Mikhail Smirnov
- Department of Physics, Voronezh State University, 394018 Voronezh, Russia
| | - Oleg Ovchinnikov
- Department of Physics, Voronezh State University, 394018 Voronezh, Russia
| |
Collapse
|
4
|
Wang X, Wang P, Li M, Li J. Advances in the preparation and biological applications of core@shell nanocrystals based on quantum dots and noble metal. RSC Adv 2024; 14:26308-26324. [PMID: 39165789 PMCID: PMC11333998 DOI: 10.1039/d4ra05386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Core/shell structured nanoparticles (NPs) are a novel category of functional materials that have garnered widespread attention due to their advantageous preparation methods, unique characteristics, and multifunctional application prospects, which have shown significant performance in materials chemistry and many other fields, such as electronics, biomedical, pharmaceutical, optics, and catalysis. Although some reviews about core/shell NPs have been published, there is still an intense requirement for an extensive review about the updated literature and new reported core/shell nanomaterials. Colloidal quantum dots (QDs) and noble metal NPs have a very small size, which results in the large surface-to-volume ratio and under-coordinated chemical bonds. As a result, the effort on the design of core-shell structure has been essential for colloidal QDs and noble metal NPs. In this review, the core-shell structures dominated by traditional QDs and CsPbX3 perovskite QDs, as well as noble metal nanocrystals (NCs) were summarized. The applications of the above core-shell structure NCs in medical or biological fields such as sensing, biological imaging, medical diagnostics and therapeutics, immunological diagnosis were discussed. The main objective of this review is to provide a better basis for the synthesis, properties, and biomedical applications of QDs or noble metal core/shell NPs, which is beneficial for the further development of QDs, noble metal NPs, and other NPs.
Collapse
Affiliation(s)
- Xi Wang
- Central Hospital Affiliated to Shandong First Medical University Jinan Shandong 250013 China
| | - Peng Wang
- Department of Public Scientific Research Platform, School of Clinical and Basic Medicine, Shandong First Medical University, Shandong Academy of Medical Sciences Jinan China
| | - Meng Li
- Institute of Resource and Environmental Innovation, School of Municipal and Environmental Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Jian Li
- Central Hospital Affiliated to Shandong First Medical University Jinan Shandong 250013 China
| |
Collapse
|
5
|
Ortiz Calderon FG, Gómez Pineros BS, McClenaghan ND, Granados-Oliveros G. Influence of Structural Properties of Oleic Acid-Capped CdSe/ZnS Quantum Dots in the Detection of Hg 2+ Ions. J Fluoresc 2024:10.1007/s10895-024-03828-0. [PMID: 39009903 DOI: 10.1007/s10895-024-03828-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Oleic acid-capped CdSe/ZnS quantum dots (QDs) were used to investigate their photoluminescence (PL) response to Hg2+ ions as a function of the surface properties of QDs. Three distinctly-size CdSe/ZnS QDs were obtained by varying the molar ratio of shell precursors, which were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), Fourier-Transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), absorption spectroscopy, and time-resolved fluorescence spectroscopy. Results revealed the obtention of zinc blende nanocrystals with sizes ranging from 2.7 to 3.2 nm (± 0.5) and ZnS thickness between 0.3 and 1.0 monolayer (ML). The variation of the [S]/[Zn] molar ratio introduced chemical species that act as traps, affecting the PL properties differently. Depending on the thickness of the shell and chemical speciation on surface, Hg2+ ions could induce quenching or enhancement of PL. Detection of mercury ions was evaluated in terms of Stern-Volmer equation, where the limit of detection (LOD) for the PL quenching system was 11.2 nM, while for the PL enhancing systems were 8.98 nM and 10.7 nM. Results demonstrate the performance of oleic acid-capped CdSe/ZnS QDs to detect Hg2+ and their capacity to turn the PL on/off depending on surface properties.
Collapse
Affiliation(s)
- Fredy Giovany Ortiz Calderon
- Grupo de Síntesis Orgánica Sostenible, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, DC, Colombia
- Institut des Sciences Moléculaires, CNRS UMR 5255, University of Bordeaux, Talence, 33405, France
| | - Brayan Stiven Gómez Pineros
- Grupo de Síntesis Orgánica Sostenible, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, DC, Colombia
| | - Nathan D McClenaghan
- Institut des Sciences Moléculaires, CNRS UMR 5255, University of Bordeaux, Talence, 33405, France
| | - Gilma Granados-Oliveros
- Grupo de Síntesis Orgánica Sostenible, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, DC, Colombia.
| |
Collapse
|
6
|
Okafor O, Kim K. Cytotoxicity of Quantum Dots in Receptor-Mediated Endocytic and Pinocytic Pathways in Yeast. Int J Mol Sci 2024; 25:4714. [PMID: 38731933 PMCID: PMC11083673 DOI: 10.3390/ijms25094714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/20/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Despite the promising applications of the use of quantum dots (QDs) in the biomedical field, the long-lasting effects of QDs on the cell remain poorly understood. To comprehend the mechanisms underlying the toxic effects of QDs in yeast, we characterized defects associated with receptor-mediated endocytosis (RME) as well as pinocytosis using Saccharomyces cerevisiae as a model in the presence of cadmium selenide/zinc sulfide (CdSe/ZnS) QDs. Our findings revealed that QDs led to an inefficient RME at the early, intermediate, and late stages of endocytic patch maturation at the endocytic site, with the prolonged lifespan of GFP fused yeast fimbrin (Sac6-GFP), a late marker of endocytosis. The transit of FM1-43, a lipophilic dye from the plasma membrane to the vacuole, was severely retarded in the presence of QDs. Finally, QDs caused an accumulation of monomeric red fluorescent protein fused carbamoyl phosphate synthetase 1 (mRFP-Cps1), a vacuolar lumen marker in the vacuole. In summary, the present study provides novel insights into the possible impact of CdSe/ZnS QDs on the endocytic machinery, enabling a deeper comprehension of QD toxicity.
Collapse
Affiliation(s)
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65897, USA;
| |
Collapse
|
7
|
Donnelly FC, Purcell-Milton F, Caffrey E, Branzi L, Stafford S, Alhammad FA, Cleary O, Ghariani M, Kuznetsova V, Gun’ko YK. Chiroptically Active Multi-Modal Calcium Carbonate-Based Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:100. [PMID: 38202555 PMCID: PMC10780737 DOI: 10.3390/nano14010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
The development of multimodal nano- and micro-structures has become an increasingly popular area of research in recent years. In particular, the combination of two or more desirable properties within a single structure opens multiple opportunities from biomedicine, sensing, and catalysis, to a variety of optical applications. Here, for the first time, we report the synthesis and characterization of multimodal chiroptically active CaCO3 nanocomposites. These composites have been prepared by a modified microemulsion method in the presence of an amino acid (cysteine). Following this, additional modalities have been introduced by loading the composites with luminescent nanoparticles or doping with Eu3+ ions. The luminescent composites have been produced by the incorporation of CuInZnS/ZnS or CdSe@ZnS/ZnS core/shell quantum dots, or via doping with trivalent europium. In this manner, we have produced chiroptically active composites with orange, green, and red luminescence. Overall, this work demonstrates the unique advantage and potential of our approach and new class of chiroptically active CaCO3 nanocomposites, which display tunable functionality to specific requirements via the incorporation of desired ions, nanoparticles, and chirality of the structure.
Collapse
Affiliation(s)
- Fearghal C. Donnelly
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland (L.B.); (F.A.A.)
- BiOrbic Bioeconomy SFI Research Centre, University College Dublin, D04 F438 Dublin, Ireland
| | - Finn Purcell-Milton
- Chemical & BioPharmaceutical Science, Technological University Dublin, Grangegorman, D07 H6K8 Dublin, Ireland
| | - Eoin Caffrey
- School of Physics, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Lorenzo Branzi
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland (L.B.); (F.A.A.)
| | - Shelley Stafford
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland (L.B.); (F.A.A.)
| | - Faisal Ali Alhammad
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland (L.B.); (F.A.A.)
| | - Olan Cleary
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland (L.B.); (F.A.A.)
| | - Munirah Ghariani
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland (L.B.); (F.A.A.)
| | - Vera Kuznetsova
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland (L.B.); (F.A.A.)
| | - Yurii K. Gun’ko
- School of Chemistry, Trinity College Dublin, D02 PN40 Dublin, Ireland (L.B.); (F.A.A.)
- BiOrbic Bioeconomy SFI Research Centre, University College Dublin, D04 F438 Dublin, Ireland
| |
Collapse
|
8
|
Wang Y, Zhong Y, Zi J, Lian Z. Type-I CdSe@CdS@ZnS Heterostructured Nanocrystals with Long Fluorescence Lifetime. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7007. [PMID: 37959604 PMCID: PMC10648168 DOI: 10.3390/ma16217007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023]
Abstract
Conventional single-component quantum dots (QDs) suffer from low recombination rates of photogenerated electrons and holes, which hinders their ability to meet the requirements for LED and laser applications. Therefore, it is urgent to design multicomponent heterojunction nanocrystals with these properties. Herein, we used CdSe quantum dot nanocrystals as a typical model, which were synthesized by means of a colloidal chemistry method at high temperatures. Then, CdS with a wide band gap was used to encapsulate the CdSe QDs, forming a CdSe@CdS core@shell heterojunction. Finally, the CdSe@CdS core@shell was modified through the growth of the ZnS shell to obtain CdSe@CdS@ZnS heterojunction nanocrystal hybrids. The morphologies, phases, structures and performance characteristics of CdSe@CdS@ZnS were evaluated using various analytical techniques, including transmission electron microscopy, X-ray diffraction, UV-vis absorption spectroscopy, fluorescence spectroscopy and time-resolved transient photoluminescence spectroscopy. The results show that the energy band structure is transformed from type II to type I after the ZnS growth. The photoluminescence lifetime increases from 41.4 ns to 88.8 ns and the photoluminescence quantum efficiency reaches 17.05% compared with that of pristine CdSe QDs. This paper provides a fundamental study and a new route for studying light-emitting devices and biological imaging based on multicomponent QDs.
Collapse
Affiliation(s)
| | | | | | - Zichao Lian
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Y.W.); (Y.Z.); (J.Z.)
| |
Collapse
|