1
|
Kornienko AI, Teplonogova MA, Shevelyova MP, Popkov MA, Popov AL, Ivanov VE, Popova NR. Novel Flavin Mononucleotide-Functionalized Cerium Fluoride Nanoparticles for Selective Enhanced X-Ray-Induced Photodynamic Therapy. J Funct Biomater 2024; 15:373. [PMID: 39728173 DOI: 10.3390/jfb15120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
X-ray-induced photodynamic therapy (X-PDT) represents a promising new method of cancer treatment. A novel type of nanoscintillator based on cerium fluoride (CeF3) nanoparticles (NPs) modified with flavin mononucleotide (FMN) has been proposed. A method for synthesizing CeF3-FMN NPs has been developed, enabling the production of colloidal, spherical NPs with an approximate diameter of 100 nm, low polydispersity, and a high fluorescence quantum yield of 0.42. It has been demonstrated that CeF3-FMN NPs exhibit pH-dependent radiation-induced redox activity when exposed to X-rays. This activity results in the generation of reactive oxygen species, which is associated with the scintillation properties of cerium and the transfer of electrons to FMN. The synthesized NPs have been demonstrated to exhibit minimal cytotoxicity towards normal cells (NCTC L929 fibroblasts) but are more toxic to tumor cells (epidermoid carcinoma A431). Concurrently, the synthesized NPs (CeF3 and CeF3-FMN NPs) demonstrate a pronounced selective radiosensitizing effect on tumor cells at concentrations of 10-7 and 10-3 M, resulting in a significant reduction in their clonogenic activity, increasing radiosensitivity for cancer cells by 1.9 times following X-ray irradiation at a dose of 3 to 6 Gy. In the context of normal cells, these nanoparticles serve the function of antioxidants, maintaining a high level of clonogenic activity. Functional nanoscintillators on the basis of cerium fluoride can be used as part of the latest technologies for the treatment of tumors within the framework of X-PDT.
Collapse
Affiliation(s)
- Anastasia I Kornienko
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maria A Teplonogova
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Marina P Shevelyova
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino 142290, Russia
| | - Matvei A Popkov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anton L Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Vladimir E Ivanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Nelli R Popova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| |
Collapse
|
2
|
Motewasselin N, Hiller KA, Cieplik F, Kopp L, Pfitzner A, Pielnhofer F, Auer DL, Buchalla W, Scholz KJ. Cerium- and samarium-nitrate interaction and accumulation on human dentin. Arch Oral Biol 2024; 167:106053. [PMID: 39029289 DOI: 10.1016/j.archoralbio.2024.106053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
OBJECTIVE To investigate the accumulation of cerium-nitrate and samarium-nitrate on dentin without or with smear-layer and to test their antibacterial activity. DESIGN 24 dentin-enamel slices were cut from 24 extracted molars. 12 slices underwent smear-layer creation (320 grit, 200 g, 5 s), the other 12 smear-layer removal (20 % EDTA, 300 s). Slices were halved to 48 semilunar-shaped specimens. One specimen per tooth was treated with either Ce(NO3)3 (50 wt% aqueous solution; pH = 1.29; n = 6) or Sm(NO3)3 (50 wt% aqueous solution; pH = 1.88; n = 6). The other specimen served as control (A. demin). After water rinsing, elemental composition (Ce, Sm, Ca, P, O, N, Na, Mg, C) was measured (EDX; EDAX Octane-Elect, APEX v2.5, low-vacuum) in dentin. Atomic percent (At%), Ca/P- and Ca/N-ratios were calculated and analyzed non-parametrically (α = 0.05, error rates method). Additionally, antibacterial activity (2 min exposure) of Ce(NO3)3 and Sm(NO3)3 against Streptococcus mutans, Actinomyces naeslundii, Schaalia odontolytica, and Enterococcus faecalis was determined (colony forming units) after anaerobic incubation at 37 °C for 24 h (control: 0.2 % CHX). RESULTS At% (median) of Ce and Sm were as follows: Ce(NO3)3 3.4 and 0.9 At%Ce with and without smear-layer, respectively; Sm(NO3)3 2.4 and 1.3 At%Sm with and without smear-layer, respectively. Ce(NO3)3 and Sm(NO3)3-application significantly decreased Ca/P-ratios (1.22 - 1.45; p ≤ 0.02) compared to controls (1.47 - 1.63). With smear-layer, significantly higher Ca/N-ratios (5.1 - 29.3) could be detected across all groups (p ≤ 0.004) compared to specimens without smear-layer (0.37 - 0.48). Ce(NO3)3 and Sm(NO3)3 showed reduction rates of up to ≥ 5 log10 steps for S. mutans, A. naeslundii, and S. odontolytica. CONCLUSIONS Cerium and samarium nitrate showed accumulation on dentin and certain antibacterial activity and could therefore be identified as potential compounds to treat and prevent dentin and root caries and dentin hypersensitivity.
Collapse
Affiliation(s)
- Nima Motewasselin
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Karl-Anton Hiller
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Fabian Cieplik
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Louis Kopp
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Arno Pfitzner
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, Regensburg 93047, Germany
| | - Florian Pielnhofer
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, Regensburg 93047, Germany
| | - David L Auer
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Konstantin J Scholz
- Department of Conservative Dentistry and Periodontology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
3
|
Kumar S, Chhabra V, Mehra M, K S, Kumar B H, Shenoy S, Swamy RS, Murti K, Pai KSR, Kumar N. The fluorosis conundrum: bridging the gap between science and public health. Toxicol Mech Methods 2024; 34:214-235. [PMID: 37921264 DOI: 10.1080/15376516.2023.2268722] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023]
Abstract
Fluorosis, a chronic condition brought on by excessive fluoride ingestion which, has drawn much scientific attention and public health concern. It is a complex and multifaceted issue that affects millions of people worldwide. Despite decades of scientific research elucidating the causes, mechanisms, and prevention strategies for fluorosis, there remains a significant gap between scientific understanding and public health implementation. While the scientific community has made significant strides in understanding the etiology and prevention of fluorosis, effectively translating this knowledge into public health policies and practices remains challenging. This review explores the gap between scientific research on fluorosis and its practical implementation in public health initiatives. It suggests developing evidence-based guidelines for fluoride exposure and recommends comprehensive educational campaigns targeting the public and healthcare providers. Furthermore, it emphasizes the need for further research to fill the existing knowledge gaps and promote evidence-based decision-making. By fostering collaboration, communication, and evidence-based practices, policymakers, healthcare professionals, and the public can work together to implement preventive measures and mitigate the burden of fluorosis on affected communities. This review highlighted several vital strategies to bridge the gap between science and public health in the context of fluorosis. It emphasizes the importance of translating scientific evidence into actionable guidelines, raising public awareness about fluoride consumption, and promoting preventive measures at individual and community levels.
Collapse
Affiliation(s)
- Sachindra Kumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Vishal Chhabra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Manmeet Mehra
- Department of Pharmacology, Guru Nanak Dev University, Amritsar, India
| | - Saranya K
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Smita Shenoy
- Department of Pharmacology, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ravindra Shantakumar Swamy
- Division of Anatomy, Department of Basic Medical Sciences (DBMS), Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, India
| | - K Sreedhara Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, India
| |
Collapse
|
4
|
Ermakov AM, Afanasyeva VA, Lazukin AV, Shlyapnikov YM, Zhdanova ES, Kolotova AA, Blagodatski AS, Ermakova ON, Chukavin NN, Ivanov VK, Popov AL. Synergistic Antimicrobial Effect of Cold Atmospheric Plasma and Redox-Active Nanoparticles. Biomedicines 2023; 11:2780. [PMID: 37893152 PMCID: PMC10604215 DOI: 10.3390/biomedicines11102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Cold argon plasma (CAP) and metal oxide nanoparticles are well known antimicrobial agents. In the current study, on an example of Escherichia coli, a series of analyses was performed to assess the antibacterial action of the combination of these agents and to evaluate the possibility of using cerium oxide and cerium fluoride nanoparticles for a combined treatment of bacterial diseases. The joint effect of the combination of cold argon plasma and several metal oxide and fluoride nanoparticles (CeO2, CeF3, WO3) was investigated on a model of E. coli colony growth on agar plates. The mutagenic effect of different CAP and nanoparticle combinations on bacterial DNA was investigated, by means of a blue-white colony assay and RAPD-PCR. The effect on cell wall damage, using atomic force microscopy, was also studied. The results obtained demonstrate that the combination of CAP and redox-active metal oxide nanoparticles (RAMON) effectively inhibits bacterial growth, providing a synergistic antimicrobial effect exceeding that of any of the agents alone. The combination of CAP and CeF3 was shown to be the most effective mutagen against plasmid DNA, and the combination of CAP and WO3 was the most effective against bacterial genomic DNA. The analysis of direct cell wall damage by atomic force microscopy showed the combination of CAP and CeF3 to be the most effective antimicrobial agent. The combination of CAP and redox-active metal oxide or metal fluoride nanoparticles has a strong synergistic antimicrobial effect on bacterial growth, resulting in plasmid and genomic DNA damage and cell wall damage. For the first time, a strong antimicrobial and DNA-damaging effect of CeF3 nanoparticles has been demonstrated.
Collapse
Affiliation(s)
- Artem M. Ermakov
- Hospital of the Pushchino Scientific Center of the Russian Academy of Sciences, 142290 Pushchino, Russia (V.A.A.); (E.S.Z.)
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.M.S.); (A.A.K.); (A.S.B.); (O.N.E.); (N.N.C.)
- ANO Engineering Physics Institute, 142210 Serpukhov, Russia
| | - Vera A. Afanasyeva
- Hospital of the Pushchino Scientific Center of the Russian Academy of Sciences, 142290 Pushchino, Russia (V.A.A.); (E.S.Z.)
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.M.S.); (A.A.K.); (A.S.B.); (O.N.E.); (N.N.C.)
| | - Alexander V. Lazukin
- Troitsk Institute of Innovative and Thermonuclear Research (JSC “SSC RF TRINITY”), 108840 Moscow, Russia;
| | - Yuri M. Shlyapnikov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.M.S.); (A.A.K.); (A.S.B.); (O.N.E.); (N.N.C.)
| | - Elizaveta S. Zhdanova
- Hospital of the Pushchino Scientific Center of the Russian Academy of Sciences, 142290 Pushchino, Russia (V.A.A.); (E.S.Z.)
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.M.S.); (A.A.K.); (A.S.B.); (O.N.E.); (N.N.C.)
| | - Anastasia A. Kolotova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.M.S.); (A.A.K.); (A.S.B.); (O.N.E.); (N.N.C.)
| | - Artem S. Blagodatski
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.M.S.); (A.A.K.); (A.S.B.); (O.N.E.); (N.N.C.)
| | - Olga N. Ermakova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.M.S.); (A.A.K.); (A.S.B.); (O.N.E.); (N.N.C.)
| | - Nikita N. Chukavin
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.M.S.); (A.A.K.); (A.S.B.); (O.N.E.); (N.N.C.)
- Scientific and Educational Center, State University of Education, 105005 Moscow, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Russia; (Y.M.S.); (A.A.K.); (A.S.B.); (O.N.E.); (N.N.C.)
- Scientific and Educational Center, State University of Education, 105005 Moscow, Russia
| |
Collapse
|
5
|
Filippova KO, Ermakov AM, Popov AL, Ermakova ON, Blagodatsky AS, Chukavin NN, Shcherbakov AB, Baranchikov AE, Ivanov VK. Mitogen-like Cerium-Based Nanoparticles Protect Schmidtea mediterranea against Severe Doses of X-rays. Int J Mol Sci 2023; 24:ijms24021241. [PMID: 36674757 PMCID: PMC9864839 DOI: 10.3390/ijms24021241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Novel radioprotectors are strongly demanded due to their numerous applications in radiobiology and biomedicine, e.g., for facilitating the remedy after cancer radiotherapy. Currently, cerium-containing nanomaterials are regarded as promising inorganic radioprotectors due to their unrivaled antioxidant activity based on their ability to mimic the action of natural redox enzymes like catalase and superoxide dismutase and to neutralize reactive oxygen species (ROS), which are by far the main damaging factors of ionizing radiation. The freshwater planarian flatworms are considered a promising system for testing new radioprotectors, due to the high regenerative potential of these species and an excessive amount of proliferating stem cells (neoblasts) in their bodies. Using planarian Schmidtea mediterranea, we tested CeO2 nanoparticles, well known for their antioxidant activity, along with much less studied CeF3 nanoparticles, for their radioprotective potential. In addition, both CeO2 and CeF3 nanoparticles improve planarian head blastema regeneration after ionizing irradiation by enhancing blastema growth, increasing the number of mitoses and neoblasts' survival, and modulating the expression of genes responsible for the proliferation and differentiation of neoblasts. The CeO2 nanoparticles' action stems directly from their redox activity as ROS scavengers, while the CeF3 nanoparticles' action is mediated by overexpression of "wound-induced genes" and neoblast- and stem cell-regulating genes.
Collapse
Affiliation(s)
- Kristina O. Filippova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Artem M. Ermakov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Moscow Region Pedagogical State University, Moscow 141014, Russia
| | - Anton L. Popov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Correspondence:
| | - Olga N. Ermakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Artem S. Blagodatsky
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Nikita N. Chukavin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Moscow Region Pedagogical State University, Moscow 141014, Russia
| | - Alexander B. Shcherbakov
- Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine
| | - Alexander E. Baranchikov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Vladimir K. Ivanov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|