1
|
Fan D, Peng Y, He X, Ouyang J, Fu L, Yang H. Recent Progress on the Adsorption of Heavy Metal Ions Pb(II) and Cu(II) from Wastewater. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1037. [PMID: 38921913 PMCID: PMC11206449 DOI: 10.3390/nano14121037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
With the processes of industrialization and urbanization, heavy metal ion pollution has become a thorny problem in water systems. Among the various technologies developed for the removal of heavy metal ions, the adsorption method is widely studied by researchers and various nanomaterials with good adsorption performances have been prepared during the past decades. In this paper, a variety of novel nanomaterials with excellent adsorption performances for Pb(II) and Cu(II) reported in recent years are reviewed, such as carbon-based materials, clay mineral materials, zero-valent iron and their derivatives, MOFs, nanocomposites, etc. The novel nanomaterials with extremely high adsorption capacity, selectivity and particular nanostructures are summarized and introduced, along with their advantages and disadvantages. And, some future research priorities for the treatment of wastewater are also prospected.
Collapse
Affiliation(s)
- Dikang Fan
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (D.F.); (J.O.); (H.Y.)
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
| | - Yang Peng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Xi He
- Changsha Industrial Technology Research Institute (Environmental Protection) Co., Ltd., Changsha 410083, China;
- Aerospace Kaitian Environmental Technology Co., Ltd., Changsha 410083, China
| | - Jing Ouyang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (D.F.); (J.O.); (H.Y.)
| | - Liangjie Fu
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (D.F.); (J.O.); (H.Y.)
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| | - Huaming Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China; (D.F.); (J.O.); (H.Y.)
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China;
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
2
|
Shao Z, Shen R, Gui Z, Xie J, Jiang J, Wang X, Li W, Guo S, Liu Y, Zheng G. Ethyl cellulose/gelatin/β-cyclodextrin/curcumin nanofibrous membrane with antibacterial and formaldehyde adsorbable capabilities for lightweight and high-performance air filtration. Int J Biol Macromol 2024; 254:127862. [PMID: 37939775 DOI: 10.1016/j.ijbiomac.2023.127862] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Functionalization of bio-based nanofibers is the development tendency of high-performance air filter. However, the conventional structural optimization strategy based on high solution conductivity greatly hinders the development of fully bio-based air filter, and not conducive to sustainable development. This work fabricated fully bio-based nanofibrous membrane with formaldehyde-adsorbable and antibacterial capabilities by electrospinning low-conductivity solution for high-performance air filtration and applied to lightweight mask. The "water-like" ethyl cellulose (EC) was selected as the base polymer to "nourish" functional materials of gelatin (GE), β-cyclodextrin (βCD), and curcumin (Cur), thus forming a solution system with high binding energy differences and electrospinning into ultrafine bimodal nanofibers. The filtration efficiency for 0.3 μm NaCl particles, pressure drop, and quality factor were 99.25 %, 53 Pa, and 0.092 Pa-1, respectively; the bacteriostatic rates against Escherichia coli and Staphylococcus aureus were 99.9 % and 99.4 %, respectively; the formaldehyde adsorption capacity was 442 μg/g. This is the first report on antibacterial and formaldehyde-adsorbable high-performance air filter entirely made from bio-based materials. This simple strategy will greatly broaden the selection of materials for preparing high-performance multifunctional air filter, and promote the development of bio-based air filter.
Collapse
Affiliation(s)
- Zungui Shao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Ruimin Shen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Zeqian Gui
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Junjie Xie
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Jiaxin Jiang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Xiang Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Wenwang Li
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Shumin Guo
- School of Mathematical Sciences, Xiamen University, Xiamen 361102, China
| | - Yifang Liu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Gaofeng Zheng
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China.
| |
Collapse
|
3
|
Basso Peressut A, Cristiani C, Dotelli G, Dotti A, Latorrata S, Bahamonde A, Gascó A, Hermosilla D, Balzarotti R. Reduced Graphene Oxide/Waste-Derived TiO 2 Composite Membranes: Preliminary Study of a New Material for Hybrid Wastewater Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13061043. [PMID: 36985937 PMCID: PMC10055702 DOI: 10.3390/nano13061043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/11/2023] [Indexed: 06/01/2023]
Abstract
This work reports the preliminary results of the development of composite self-assembling membranes obtained by the combination of reduced graphene oxide (rGO) with commercial Degussa P25 titanium dioxide (TiO2). The purpose is to demonstrate the possibility of combining, in the same self-standing material, the capability to treat wastewater containing both inorganic and organic pollutants by exploiting the established ability of rGO to capture metal ions together with that of TiO2 to degrade organic substances. Moreover, this study also investigates the potential photocatalytic properties of tionite (TIO), to demonstrate the feasibility of replacing commercial TiO2 with such waste-derived TiO2-containing material, fulfilling a circular economy approach. Thus, rGO-TiO2 and rGO-TIO composite membranes, 1:1 by weight, were prepared and characterized by SEM-EDX, XRD, thermogravimetry, as well as by Raman and UV-Vis spectroscopies to verify the effective and homogeneous integration of the two components. Then, they were tested towards 3-mg L-1 aqueous synthetic solutions of Fe3+ and Cu2+ ions to evaluate their metal adsorption ability, with values of the order of 0.1-0.2 mmol gmembrane-1, comparable or even slightly higher than those of pristine rGO. Finally, the ability of the composites to degrade a common organic pesticide, i.e., Imidacloprid®, was assessed in preliminary photocatalysis experiments, in which maximum degradation efficiencies of 25% (after 3 h) for rGO-TiO2 and of 21% (after 1 h) for rGO-TIO were found. The result of tionite-containing membranes is particularly promising and worthy of further investigation, given that the anatase content of tionite is roughly 1/6 of the one in commercial TiO2.
Collapse
Affiliation(s)
- Andrea Basso Peressut
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Cinzia Cristiani
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Giovanni Dotelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Anna Dotti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Saverio Latorrata
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci 32, 20133 Milan, Italy
| | - Ana Bahamonde
- Instituto de Catálisis y Petroleoquímica, Consejo Superior de Investigaciones Científicas, Calle de Marie Curie 2, 28049 Madrid, Spain
| | - Antonio Gascó
- Departamento de Ingeniería y Gestión Forestal y Ambiental, Universidad Politécnica de Madrid, Calle de José Antonio Novais 10, 28040 Madrid, Spain
| | - Daphne Hermosilla
- Departamento de Ingeniería y Gestión Forestal y Ambiental, Universidad Politécnica de Madrid, Calle de José Antonio Novais 10, 28040 Madrid, Spain
| | - Riccardo Balzarotti
- Department of Innovative Technologies, University of Applied Sciences and Arts of Southern Switzerland, Via la Santa 1, 6962 Lugano, Switzerland
| |
Collapse
|
4
|
Rodaev VV, Razlivalova SS, Tyurin AI, Vasyukov VM. Electrospun Zr-Doped CaO Sorbent for CO 2 Capture. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:747. [PMID: 36839115 PMCID: PMC9964891 DOI: 10.3390/nano13040747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
A Zr-doped CaO sorbent for high-temperature CO2 capture was fabricated using electrospinning. The nanofiber sorbent with an average filament diameter of about 160 nm is characterized by an initial CO2 uptake capacity of 12.1 mmol/g, a specific surface area of 79 m2/g, an indentation Young's modulus of 520 MPa, and a hardness of 1.6 MPa. After 50 carbonation/decarbonation cycles, the sorbent has a decent CO2 uptake capacity of 9.7 mmol/g due to the uniform distribution of CaZrO3 in the CaO nanofibers to prevent CaO grain growth caused by CaCO3 sintering. It is revealed that the sorbent CO2 uptake capacity decreases both with an increase in the decarbonation temperature and with an increase in the CO2 concentration in the gas flow upon carbonation, where the sorbent CO2 uptake capacity is more sensitive to the decarbonation temperature than to the CO2 concentration in the gaseous stream during carbonation. It is assumed that the electrospun regenerable Zr-doped CaO sorbent is effective for removing CO2 from flue gases.
Collapse
|
5
|
Sarkodie B, Amesimeku J, Frimpong C, Howard EK, Feng Q, Xu Z. Photocatalytic degradation of dyes by novel electrospun nanofibers: A review. CHEMOSPHERE 2023; 313:137654. [PMID: 36581126 DOI: 10.1016/j.chemosphere.2022.137654] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Textile industry is a significant contributor of wastewater, which contains pollutants including dye and other chemical substances. The release of thousands of tons of dye used in textile processing and finishing into natural streams and aquatic bodies present dire harm to the environment. In response to environmental concerns, a number of research have been done using low-cost technology to produce absorbents that can remove dyes from water bodies. Distinct techniques such as adsorption, enzymatic and photocatalytic degradation, etc. have been employed to remove dyes. In the last few decades, photocatalysis, a simple and green strategy, has emerged as the most valuable and recent principle that deals with wastewater treatment, using uniquely fabricated nanomaterials. Among them, rapid and versatile electrospinning methods have been used for the construction of a large surface area, hierarchical and reusable nanofibers for environmental remediation. As a flexible and fast fabrication method, reviewing the use of electrospun photocatalytic nanofibers, influential parameters in electrospinning and their effectiveness in the generation of oxidizing agents are a promising platform for the fabrication of novel nanomaterials in photocatalytic degradation of dyes. This review discusses techniques for dye removal, electrospun nanofibers, their fabrication and application in photocatalysis; mechanism of photocatalytic degradation, and challenges and suggested remedies for electrospun nanofibers in photocatalysis.
Collapse
Affiliation(s)
- Bismark Sarkodie
- College of Textiles and Garments, Anhui Polytechnic University, Wuhu, 241000, Anhui Province, China
| | - Jeremiah Amesimeku
- School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Charles Frimpong
- Department of Industrial Art (Textiles), Kwame Nkrumah University of Science and Technology, Private Mail Bag, Kumasi, Ghana
| | - Ebenezer Kofi Howard
- Department of Industrial Art (Textiles), Kwame Nkrumah University of Science and Technology, Private Mail Bag, Kumasi, Ghana
| | - Quan Feng
- College of Textiles and Garments, Anhui Polytechnic University, Wuhu, 241000, Anhui Province, China.
| | - Zhenzhen Xu
- College of Textiles and Garments, Anhui Polytechnic University, Wuhu, 241000, Anhui Province, China
| |
Collapse
|