1
|
Nadekar B, Khollam YB, Shaikh SF, Shah G, Kakade Y, Banewar V, Nakate UT, Al Enizi AM, More PS. Biphenyl-rGO composite room temperature gas sensor for enhanced amine sensing. CHEMOSPHERE 2024; 351:141244. [PMID: 38242515 DOI: 10.1016/j.chemosphere.2024.141244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/23/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Amines, which are classified as volatile organic compounds (VOCs), serve a variety of purposes in the fields of environmental monitoring, food safety, and healthcare diagnosis. The present technique for detecting amine levels involves sophisticated setups and bulky equipment. Here. In this study, a chemoresistive gas sensor is developed that is cost-effective and easy to operate at room temperature (RT). The sensor is designed specifically for the detection of Ammonia, dimethylamine (DMA), trimethylamine (TMA), and total volatile basic nitrogen (TVB-N). Using biphenyl-reduced graphene oxide (B-rGO) composite gas sensors effectively addresses the issues of low sensitivity-selectivity and long-term instability commonly observed in conventional amine sensors. B-rGO sensor produced sensitivity of ∼3500 and selectivity above 30 for TVB-N sensing. The sensor is stable for temperature fluctuations below 50 °C and shows stable sensing response for period of over 3 months. A Chemoresistive B-rGO sensor was developed using an ultrasonic spray deposition system with optimized flow rate of 50 mL/h. Rapid evaporation of solvent using hot plate has resulted in unique morphology for B-rGO film sensors. The highest sensitivity, ∼836, is obtained for 100 ppm of ammonia with ammonia > DMA > TMA as a sensitivity order. B-rGO showed almost seven times higher amine sensitivity than rGO which highlights the importance of biphenyl in the B-rGO composite. Sensor calibration curve has been presented in the study to understand change in the sensitivity of sensor with increasing analyte gas concentration. The calibration curve has an average R-squared value of 0.98.
Collapse
Affiliation(s)
- Baliram Nadekar
- Nanomaterials Application Laboratory, Department of Physics, The Institute of Science, Fort, Mumbai, 400032, Maharashtra, India
| | - Yogesh B Khollam
- Department of Physics, Baburaoji Gholap College, Sangvi, Pune, 411027. Maharashtra, India
| | - Shoyebmohamad F Shaikh
- Department of Chemistry, College of Science, Bld-5, King Saud University, Riyadh, Saudi Arabia
| | - Gaurav Shah
- Nanomaterials Application Laboratory, Department of Physics, The Institute of Science, Fort, Mumbai, 400032, Maharashtra, India
| | - Yogesh Kakade
- Nanomaterials Application Laboratory, Department of Physics, The Institute of Science, Fort, Mumbai, 400032, Maharashtra, India
| | - Vishal Banewar
- Department of Chemitry, The Institute of Science, Fort, Mumbai, 400032, Maharashtra, India
| | - Umesh T Nakate
- Department of Polymer-Nano Science and Technology, Jeonbuk National University (JBNU), Jeonju-Si, Jeollabuk-do, Republic of Korea
| | - Abdullah M Al Enizi
- Department of Chemistry, College of Science, Bld-5, King Saud University, Riyadh, Saudi Arabia
| | - Pravin S More
- Nanomaterials Application Laboratory, Department of Physics, The Institute of Science, Fort, Mumbai, 400032, Maharashtra, India.
| |
Collapse
|
2
|
Sun M, Song Y, Wu H, Wang Q. Design and Simulation of Au/SiO 2 Nanospheres Based on SPR Refractive Index Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:3163. [PMID: 36991874 PMCID: PMC10054871 DOI: 10.3390/s23063163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
In this paper, three different structures of surface plasmon resonance (SPR) sensors based on the Kretschmann configuration: Au/SiO2 thin film structure, Au/SiO2 nanospheres and Au/SiO2 nanorods are designed by adding three different forms of SiO2 materials behind the gold film of conventional Au-based SPR sensors. The effects of SiO2 shapes on the SPR sensor are investigated through modeling and simulation with the refractive index of the media to be measured ranging from 1.330 to 1.365. The results show that the sensitivity of Au/SiO2 nanospheres could be as high as 2875.4 nm/RIU, which is 25.96% higher than that of the sensor with a gold array. More interestingly, the increase in sensor sensitivity is attributed to the change in SiO2 material morphology. Therefore, this paper mainly explores the influence of the shape of the sensor-sensitizing material on the performance of the sensor.
Collapse
|
3
|
Kumar S, Wang Z, Zhang W, Liu X, Li M, Li G, Zhang B, Singh R. Optically Active Nanomaterials and Its Biosensing Applications-A Review. BIOSENSORS 2023; 13:85. [PMID: 36671920 PMCID: PMC9855722 DOI: 10.3390/bios13010085] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 05/17/2023]
Abstract
This article discusses optically active nanomaterials and their optical biosensing applications. In addition to enhancing their sensitivity, these nanomaterials also increase their biocompatibility. For this reason, nanomaterials, particularly those based on their chemical compositions, such as carbon-based nanomaterials, inorganic-based nanomaterials, organic-based nanomaterials, and composite-based nanomaterials for biosensing applications are investigated thoroughly. These nanomaterials are used extensively in the field of fiber optic biosensing to improve response time, detection limit, and nature of specificity. Consequently, this article describes contemporary and application-based research that will be of great use to researchers in the nanomaterial-based optical sensing field. The difficulties encountered during the synthesis, characterization, and application of nanomaterials are also enumerated, and their future prospects are outlined for the reader's benefit.
Collapse
Affiliation(s)
- Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Zhi Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Wen Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xuecheng Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Muyang Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Guoru Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
4
|
Fauzi NIM, Fen YW, Eddin FBK, Daniyal WMEMM. Structural and Optical Properties of Graphene Quantum Dots-Polyvinyl Alcohol Composite Thin Film and Its Potential in Plasmonic Sensing of Carbaryl. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4105. [PMID: 36432389 PMCID: PMC9698828 DOI: 10.3390/nano12224105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
In this study, graphene quantum dots (GQDs) and polyvinyl alcohol (PVA) composite was prepared and then coated on the surface of gold thin film via the spin coating technique. Subsequently, Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), and ultraviolet-visible spectroscopy (UV-Vis) were adopted to understand the structure, surface morphology, and optical properties of the prepared samples. The FT-IR spectral analysis revealed important bands, such as O-H stretching, C=O stretching, C-H stretching, and O=C=O stretching vibrations. The surface roughness of the GQDs-PVA composite thin film was found to be increased after exposure to carbaryl. On the other hand, the optical absorbance of the GQDs-PVA thin film was obtained and further analysis was conducted, revealing a band gap Eg value of 4.090 eV. The sensing potential of the thin film was analyzed using surface plasmon resonance (SPR) spectroscopy. The findings demonstrated that the developed sensor's lowest detection limit for carbaryl was 0.001 ppb, which was lower than that previously reported, i.e., 0.007 ppb. Moreover, other sensing performance parameters, such as full width at half maximum, detection accuracy, and signal-to-noise ratio, were also investigated to evaluate the sensor's efficiency.
Collapse
Affiliation(s)
- Nurul Illya Muhamad Fauzi
- Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Yap Wing Fen
- Functional Nanotechnology Devices Laboratory, Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Faten Bashar Kamal Eddin
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | | |
Collapse
|