1
|
Ma Z, Fu Q, Zhang K, Sun S, Yue M. Research on light-responsive luminescence properties of carbon dots and their applications. MATERIALS HORIZONS 2025. [PMID: 40434742 DOI: 10.1039/d5mh00676g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Carbon dots (CDs), as zero-dimensional carbon-based nanomaterials, have become a new generation of smart luminescent materials because of their tunable optical properties, excellent biocompatibility and controllable synthesis strategies. On the basis of the difference in their optical response behavior, CDs can be classified into two main systems: photoluminescent and photochromism. Photoluminescent CDs achieve luminescence, including fluorescence, room temperature phosphorescence (RTP), and thermally activated delayed fluorescence (TADF), through the modulation of the carbon core structure, surface state engineering, molecular state jumping, and crosslink-enhanced emission (CEE) mechanisms. On the other hand, photochromic CDs confer dynamic optical response properties to materials through free radical-mediated electron transfer, energy transfer modulation, or molecular isomerization. In this review, we systematically elucidate the underlying luminescence mechanisms of these two types of systems and introduce the unique properties and application prospects of photoresponsive CDs in biomedicine, catalysis, and anticounterfeiting. We summarize the latest research progress on photoresponsive CDs, analyze their material properties, and discuss the key challenges to be addressed in their future development.
Collapse
Affiliation(s)
- Zhimeng Ma
- College of Engineering, Qufu Normal University, Rizhao, Shandong 276826, People's Republic of China.
| | - Qiang Fu
- College of Engineering, Qufu Normal University, Rizhao, Shandong 276826, People's Republic of China.
| | - Kailin Zhang
- College of Engineering, Qufu Normal University, Rizhao, Shandong 276826, People's Republic of China.
| | - Shouhong Sun
- College of Engineering, Qufu Normal University, Rizhao, Shandong 276826, People's Republic of China.
| | - Mingbo Yue
- College of Engineering, Qufu Normal University, Rizhao, Shandong 276826, People's Republic of China.
| |
Collapse
|
2
|
Kang X, Jiang K, Ge S, Wei K, Zhou Y, Xu BB, Wang K, Zhang X. Frontier in Advanced Luminescent Biomass Nanocomposites for Surface Anticounterfeiting. ACS NANO 2025; 19:11547-11575. [PMID: 40099949 DOI: 10.1021/acsnano.4c17883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Biomass-based luminescent nanocomposites have garnered significant attention due to their renewable, biocompatible, and environmentally sustainable characteristics for ensuring information encryption and security. Nanomaterials are central to this development, as their high surface area, tunable optical properties, and nanoscale structural advantages enable enhanced luminescent efficiency, stability, and adaptability in diverse conditions. This review delves into the principles of luminescence, focusing on the inherent bioluminescent properties of natural materials, the utilization of biomass as precursors for carbon dots (CDs) and aggregation-induced emission (AIE)-enhanced substances, and the structural and functional optimization of luminescent materials. The role of cellulose nanocrystals (CNC), lignin, and chitosan as key biomass-derived nanomaterials will be highlighted, alongside surface and interfacial engineering strategies that further improve material performance. Recent advancements in the synthesis of biomass carbon dots and their integration into luminescent anticounterfeiting systems are discussed in detail. Furthermore, the integration of advanced artificial intelligence (AI) technologies is explored, emphasizing their potential to revolutionize luminescent anticounterfeiting. Current challenges, including scalability, waste minimization, and performance optimization, are critically examined. Finally, the review outlines future research directions, including the application of AI-driven methodologies and the exploration of unconventional luminescent biomass materials, to accelerate the development of high-performance, eco-friendly anticounterfeiting solutions.
Collapse
Affiliation(s)
- Xuelian Kang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kaixin Jiang
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yihui Zhou
- Hunan Automotive Engineering Vocational University, Zhuzhou 412001, China
| | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Kui Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Biomass Energy and Material Key Laboratory of Jiangsu Province, Nanjing 210042, China
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
3
|
Tincu (Iurciuc) CE, Hamcerencu M, Secula MS, Stan CS, Albu C, Popa M, Volf I. A Natural Carbon Encapsulated in Gellan-Based Hydrogel Particles Designed for Environmental Challenges. Gels 2024; 10:713. [PMID: 39590069 PMCID: PMC11593462 DOI: 10.3390/gels10110713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
This article reports the obtention of a new gellan-based hydrogel linked with Fe3+ and loaded with a natural micro/nanostructured carbon designed as a contaminant's removal from wastewater. Hydrogels are known for their water-retaining properties, high binding capacity, and eco-friendly features. The new material is expected to behave as one cost-effective and efficient sorbent, including natural carbon structures with various functional groups. The encapsulation efficiency ranges between 89% and 95%. The obtained hydrogel particles were characterized using FT-IR spectroscopy and scanning electron microscopy techniques. The hydrogel particles' water stability was evaluated by measuring the transmittance for 10 days, and the capacity to retain water was assessed by determining the swelling degree (Q%). The results showed that hydrogel particles are stable (the transmittance value is higher than 97.8% after 10 days), and their properties are influenced by the cross-linking degree, the amount of the carbon particles encapsulated, and the concentration of gellan. For example, the Q% values and encapsulation efficiency increased when the cross-linking degree, the carbon microstructure quantity, and the gellan concentration decreased. The new hybrid material can retain Pb(II) ions and diclofenac molecules, and could be used in different adsorption-desorption cycles.
Collapse
Affiliation(s)
- Camelia-Elena Tincu (Iurciuc)
- Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73, Prof. Dr. Docent D. Mangeron Street, 700050 Iasi, Romania; (C.-E.T.); (M.S.S.); (C.S.S.); (C.A.); (M.P.)
| | - Mihaela Hamcerencu
- Laboratoire de Photochimie et Ingénierie Macromoléculaires—Ecole Nationale Supérieure de Chimie de Mulhouse, Université de Haute Alsace, 3 rue Alfred Werner, 68093 Mulhouse Cedex, France;
| | - Marius Sebastian Secula
- Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73, Prof. Dr. Docent D. Mangeron Street, 700050 Iasi, Romania; (C.-E.T.); (M.S.S.); (C.S.S.); (C.A.); (M.P.)
| | - Corneliu Sergiu Stan
- Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73, Prof. Dr. Docent D. Mangeron Street, 700050 Iasi, Romania; (C.-E.T.); (M.S.S.); (C.S.S.); (C.A.); (M.P.)
| | - Cristina Albu
- Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73, Prof. Dr. Docent D. Mangeron Street, 700050 Iasi, Romania; (C.-E.T.); (M.S.S.); (C.S.S.); (C.A.); (M.P.)
| | - Marcel Popa
- Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73, Prof. Dr. Docent D. Mangeron Street, 700050 Iasi, Romania; (C.-E.T.); (M.S.S.); (C.S.S.); (C.A.); (M.P.)
- Academy of Romanian Scientists, Splaiul Independentei Street No. 54, 050085 Bucharest, Romania
| | - Irina Volf
- Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 73, Prof. Dr. Docent D. Mangeron Street, 700050 Iasi, Romania; (C.-E.T.); (M.S.S.); (C.S.S.); (C.A.); (M.P.)
| |
Collapse
|
4
|
Kong C, Wang K, Sun L, Zhao H, Wang T, Zhou W, Wu D, Xu F. Novel Carbon Dots Derived from Moutan Cortex Significantly Improve the Solubility and Bioavailability of Mangiferin. Int J Nanomedicine 2024; 19:3611-3622. [PMID: 38660022 PMCID: PMC11041979 DOI: 10.2147/ijn.s456053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024] Open
Abstract
Background Mangiferin (MA), a bioactive C-glucosyl xanthone with a wide range of interesting therapeutic properties, has recently attracted considerable attention. However, its application in biomedicine is limited by poor solubility and bioavailability. Carbon dots (CDs), novel nanomaterials, have immense promise as carriers for improving the biopharmaceutical properties of active components because of their outstanding characteristics. Methods In this study, a novel water-soluble carbon dot (MC-CDs) was prepared for the first time from an aqueous extract of Moutan Cortex Carbonisata, and characterized by various spectroscopies, zeta potential and high-resolution transmission electron microscopy (HRTEM). The toxicity effect was investigated using the CCK-8 assay in vitro. In addition, the potential of MC-CDs as carriers for improving the pharmacokinetic parameters was evaluated in vivo. Results The results indicated that MC-CDs with a uniform spherical particle size of 1-5 nm were successfully prepared, which significantly increased the solubility of MA in water. The MC-CDs exhibited low toxicity in HT-22 cells. Most importantly, the MC-CDs effectively affected the pharmacokinetic parameters of MA in normal rats. UPLC-MS analysis indicated that the area under the maximum blood concentration of MA from mangiferin-MC-CDs (MA-MC-CDs) was 1.6-fold higher than that from the MA suspension liquid (MA control) after oral administration at a dose of 20 mg/kg. Conclusion Moutan Cortex-derived novel CDs exhibited superior performance in improving the solubility and bioavailability of MA. This study not only opens new possibilities for the future clinical application of MA but also provides evidence for the development of green biological carbon dots as a drug delivery system to improve the biopharmaceutical properties of insoluble drugs.
Collapse
Affiliation(s)
- Chuihao Kong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
- Anhui Province Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces, Hefei, 230012, People’s Republic of China
| | - Kaidi Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
- Anhui Province Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces, Hefei, 230012, People’s Republic of China
| | - Lei Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
- Zhejiang CONBA Pharmaceutical Co. LTD, Hangzhou, 310052, People’s Republic of China
| | - Hongsu Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
- Anhui Province Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces, Hefei, 230012, People’s Republic of China
| | - Tongsheng Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Wuxi Zhou
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Deling Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
- Anhui Province Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces, Hefei, 230012, People’s Republic of China
| | - Fengqing Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
- Anhui Province Key Laboratory of New Manufacturing Technology for Traditional Chinese Medicine Decoction Pieces, Hefei, 230012, People’s Republic of China
| |
Collapse
|
5
|
Gowtham P, Harini K, Thirumalai A, Pallavi P, Girigoswami K, Girigoswami A. Synthetic routes to theranostic applications of carbon-based quantum dots. ADMET AND DMPK 2023; 11:457-485. [PMID: 37937240 PMCID: PMC10626517 DOI: 10.5599/admet.1747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/30/2023] [Indexed: 11/09/2023] Open
Abstract
Background and Purpose Modern technologies are making advanced paths to address emerging issues. The development of carbon dots (CDs) technology at a tiny level has been researched to have made impeccable strides in advancing the modern scientific field, especially in nanomedicine. Experimental Approach Researchers have gained much attention on CDs of their unique properties in the synthesis, easy surface modifications, excellent optical properties, low toxicity, and water solubility. Doping carbon dots with other elements makes them more convenient for their use in the medical sector. Key Results The manuscript provides a detailed discussion of the two main methods, including the hydrothermal pathway. CDs are synthesized bottom-up by building up molecules at the atomic scale and top-down by transforming large carbon particles into nanoscale dimensions. Conclusion The present article discussed the role, importance, and recent advancements in the synthesis of CDs, by using various approaches giving importance to the hydrothermal process. Recent investigations, their mechanism, and theranostic applications have also been reported.
Collapse
Affiliation(s)
| | | | | | | | | | - Agnishwar Girigoswami
- Medical Bionanotechnology, Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Kelambakkam, Chennai, TN-603 103, India
| |
Collapse
|
6
|
Eco-Friendly Synthesis of Functionalized Carbon Nanodots from Cashew Nut Skin Waste for Bioimaging. Catalysts 2023. [DOI: 10.3390/catal13030547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
In this study, Anacardium occidentale (A. occidentale) nut skin waste (cashew nut skin waste) was used as a raw material to synthesize functionalized carbon nanodots (F-CNDs). A. occidentale biomass-derived F-CNDs were synthesized at a low temperature (200 °C) using a facile, economical hydrothermal method and subjected to XRD, FESEM, TEM, HRTEM, XPS, Raman Spectroscopy, ATR-FTIR, and Ultraviolet-visible (UV–vis) absorption and fluorescence spectroscopy to determine their structures, chemical compositions, and optical properties. The analysis revealed that dispersed, hydrophilic F-CNDs had a mean diameter of 2.5 nm. XPS and ATR-FTIR showed F-CNDs had a crystalline core and an amorphous surface decorated with –NH2, –COOH, and C=O. In addition, F-CNDs had a quantum yield of 15.5% and exhibited fluorescence with maximum emission at 406 nm when excited at 340 nm. Human colon cancer (HCT-116) cell assays showed that F-CNDs readily penetrated into the cells, had outstanding biocompatibility, high photostability, and minimal toxicity. An MTT assay showed that the viability of HCT-116 cells incubated for 24 h in the presence of F-CNDs (200 μg mL–1) exceeded 95%. Furthermore, when stimulated by filters of three different wavelengths (405, 488, and 555 nm) under a laser scanning confocal microscope, HCT-116 cells containing F-CNDs emitted blue, red, and green, respectively, which suggests F-CNDs might be useful in the biomedical field. Thus, we describe the production of a fluorescent nanoprobe from cashew nut waste potentially suitable for bioimaging applications.
Collapse
|