1
|
Seçme M, İlhan H. Synthesis and Characterization of Thymol Carbon Nanodot Functionalized Silver Nanoparticles (ThCND-AgNPs) and Evaluation of Their Antiproliferative, Anti-Invasive, and Apoptotic Effects on OVCAR-3 Ovarian Cancer Cells. Microsc Res Tech 2025; 88:668-677. [PMID: 39517102 DOI: 10.1002/jemt.24724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/29/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Ovarian cancer belongs to the category of gynecological malignancies and unfortunately holds the distinction of being the most aggressive among them. It is ranked as the fifth highest cause of cancer-related deaths in women worldwide. The utilization of metal nanoparticles (NPs) linked with natural herbal molecules in biomedical applications has been on the rise. Thymol carbon nanodot functionalized silver nanoparticles (ThCND-AgNPs) were synthesized in an original manner and subjected to thorough characterization, including analysis of their size, morphology, and elemental composition. The aim of this study is to investigate the effects of the ThCND-AgNPs on cell proliferation, invasion, and apoptotic gene expressions in OVCAR-3 ovarian cancer cells. The effect of ThCND-AgNPs on cell viability in OVCAR cells was determined in a dose- and time-dependent manner using the XTT method. The effect on the expression changes of apoptotic-related genes was assessed through the Real-time PCR method, while the anti-invasive activity was measured using the matrigel invasion chamber assay. The ThCND-AgNP molecule exhibited a dose- and time-dependent reduction in cell proliferation in OVCAR-3 cells. The IC50 values were determined to be 388.53 μg/mL at 24 h and 145.683 μg/mL at 48 h. Furthermore, the molecule was found to reduce cell invasion by 51.12% compared with the control group in OVCAR-3 cells. In terms of apoptotic-related genes, Bcl-2 expression was downregulated, while BAX, CASPASE-3, -8, and -9 expressions were unregulated. In conclusion, the obtained data reveal the potential antiproliferative, apoptotic, and anti-invasive effects of our original ThCND-AgNP molecule in ovarian cancer. While these results need further confirmation through more detailed experiments, they will provide insights for future studies.
Collapse
Affiliation(s)
- Mücahit Seçme
- Faculty of Medicine, Department of Medical Biology, Ordu University, Ordu, Türkiye
| | - Hasan İlhan
- Institute of Biotechnology, Department of Biotechnology, Ankara University, Ankara, Türkiye
| |
Collapse
|
2
|
Sangwan A, Singh N. Advanced Nanostrategies for Biomolecule Delivery in Plant Disease Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:66-84. [PMID: 39715428 DOI: 10.1021/acs.jafc.4c08396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Sustainable plant disease management has long been a major issue in agriculture since the excessive reliance on broad-spectrum pesticides exacerbates chemical resistance, presenting environmental and health hazards. Taking cues from nature's intricate defense mechanisms, scientists are exploiting bioactive agents involved in plant-pathogen/pest interactions to develop novel strategies to combat diseases. Embracing biomolecules in agriculture offers an ecofriendly alternative to chemical pesticides. However, traditional delivery methods for biomolecules often suffer from low utilization rates and low field stability, diminishing the overall effectiveness of active compounds. The advent of nanotechnology has facilitated the design of novel delivery systems for biomolecular cargos, further enhancing their capacity to adhere to plant surfaces and make disease control strategies effective. Tailored depending upon the extent of infection and type of plant species, innovative nanoparticle strategies maximize the effectiveness of delivery by modifying the size, surface characteristics, and adhesion capacity of the particles to suit particular requirements. This review examines how the various biological factors involved in innate plant defenses can be exploited, as well as the potential of various nanocarriers in biomolecule delivery for plant disease management.
Collapse
Affiliation(s)
- Anju Sangwan
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
3
|
Serio F, Imbriani G, Girelli CR, Miglietta PP, Scortichini M, Fanizzi FP. A Decade after the Outbreak of Xylella fastidiosa subsp. pauca in Apulia (Southern Italy): Methodical Literature Analysis of Research Strategies. PLANTS (BASEL, SWITZERLAND) 2024; 13:1433. [PMID: 38891241 PMCID: PMC11175074 DOI: 10.3390/plants13111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
In 2013, an outbreak of Xylella fastidiosa (Xf) was identified for the first time in Europe, in the extreme south of Italy (Apulia, Salento territory). The locally identified subspecies pauca turned out to be lethal for olive trees, starting an unprecedented phytosanitary emergency for one of the most iconic cultivations of the Mediterranean area. Xf pauca (Xfp) is responsible for a severe disease, the olive quick decline syndrome (OQDS), spreading epidemically and with dramatic impact on the agriculture, the landscape, the tourism and the cultural heritage of this region. The bacterium, transmitted by insects that feed on xylem sap, causes rapid wilting in olive trees due to biofilm formation, which obstructs the plant xylematic vessels. The aim of this review is to perform a thorough analysis that offers a general overview of the published work, from 2013 to December 2023, related to the Xfp outbreak in Apulia. This latter hereto has killed millions of olive trees and left a ghostly landscape with more than 8000 square kilometers of infected territory, that is 40% of the region. The majority of the research efforts made to date to combat Xfp in olive plants are listed in the present review, starting with the early attempts to identify the bacterium, the investigations to pinpoint and possibly control the vector, the assessment of specific diagnostic techniques and the pioneered therapeutic approaches. Interestingly, according to the general set criteria for the preliminary examination of the accessible scientific literature related to the Xfp outbreak on Apulian olive trees, fewer than 300 papers can be found over the last decade. Most of them essentially emphasize the importance of developing diagnostic tools that can identify the disease early, even when infected plants are still asymptomatic, in order to reduce the risk of infection for the surrounding plants. On the other hand, in the published work, the diagnostic focus (57%) overwhelmingly encompasses all other possible investigation goals such as vectors, impacts and possible treatments. Notably, between 2013 and 2023, only 6.3% of the literature reports addressing the topic of Xfp in Apulia were concerned with the application of specific treatments against the bacterium. Among them, those reporting field trials on infected plants, including simple pruning indications, were further limited (6%).
Collapse
Affiliation(s)
- Francesca Serio
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Giovanni Imbriani
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Chiara Roberta Girelli
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Pier Paolo Miglietta
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| | - Marco Scortichini
- Council for Agricultural Research and Economics (CREA)-Research Centre for Olive, Fruit and Citrus Crops, Via di Fioranello, 52, 00134 Roma, Italy;
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technology, University of Salento, 73100 Lecce, Italy; (F.S.); (G.I.); (C.R.G.); (P.P.M.)
| |
Collapse
|
4
|
Baldassarre F, Schiavi D, Di Lorenzo V, Biondo F, Vergaro V, Colangelo G, Balestra GM, Ciccarella G. Cellulose Nanocrystal-Based Emulsion of Thyme Essential Oil: Preparation and Characterisation as Sustainable Crop Protection Tool. Molecules 2023; 28:7884. [PMID: 38067613 PMCID: PMC10707935 DOI: 10.3390/molecules28237884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Essential oil-based pesticides, which contain antimicrobial and antioxidant molecules, have potential for use in sustainable agriculture. However, these compounds have limitations such as volatility, poor water solubility, and phytotoxicity. Nanoencapsulation, through processes like micro- and nanoemulsions, can enhance the stability and bioactivity of essential oils. In this study, thyme essential oil from supercritical carbon dioxide extraction was selected as a sustainable antimicrobial tool and nanoencapsulated in an oil-in-water emulsion system. The investigated protocol provided high-speed homogenisation in the presence of cellulose nanocrystals as stabilisers and calcium chloride as an ionic crosslinking agent. Thyme essential oil was characterised via GC-MS and UV-vis analysis, indicating rich content in phenols. The cellulose nanocrystal/essential oil ratio and calcium chloride concentration were varied to tune the nanoemulsions' physical-chemical stability, which was investigated via UV-vis, direct observation, dynamic light scattering, and Turbiscan analysis. Transmission electron microscopy confirmed the nanosized droplet formation. The nanoemulsion resulting from the addition of crosslinked nanocrystals was very stable over time at room temperature. It was evaluated for the first time on Pseudomonas savastanoi pv. savastanoi, the causal agent of olive knot disease. In vitro tests showed a synergistic effect of the formulation components, and in vivo tests on olive seedlings demonstrated reduced bacterial colonies without any phytotoxic effect. These findings suggest that crosslinked cellulose nanocrystal emulsions can enhance the stability and bioactivity of thyme essential oil, providing a new tool for crop protection.
Collapse
Affiliation(s)
- Francesca Baldassarre
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.B.); (V.V.)
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Daniele Schiavi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, snc, 01100 Viterbo, Italy; (D.S.); (V.D.L.); (G.M.B.)
| | - Veronica Di Lorenzo
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, snc, 01100 Viterbo, Italy; (D.S.); (V.D.L.); (G.M.B.)
| | - Francesca Biondo
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.B.); (V.V.)
| | - Viviana Vergaro
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.B.); (V.V.)
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Gianpiero Colangelo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, snc, 01100 Viterbo, Italy; (D.S.); (V.D.L.); (G.M.B.)
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.B.); (V.V.)
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
5
|
Košćak L, Lamovšek J, Đermić E, Godena S. The Antibacterial Effect of Selected Essential Oils and Their Bioactive Constituents on Pseudomonas savastanoi pv. savastanoi: Phytotoxic Properties and Potential for Future Olive Disease Control. Microorganisms 2023; 11:2735. [PMID: 38004747 PMCID: PMC10673089 DOI: 10.3390/microorganisms11112735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Plant pathogenic bacteria pose a significant threat to olive cultivation, leading to substantial economic losses and reduced yield. The efficacy of antimicrobial agents against these pathogens is of great interest for sustainable disease management strategies. As such, the management of olive knot disease is one of the major challenges in olive protection. In the presented study, through a series of in vitro assays, we investigated the antimicrobial effect of six essential oils (EOs) and their most concentrated constituents against causative agent of olive knot disease-Pseudomonas savastanoi pv. savastanoi, highlighting the high potential of Origanum compactum EO and its constituent carvacrol. Carvacrol exhibited the highest potential for practical application, demonstrating membrane disruption as its mechanism of action even at the lowest concentration. The bactericidal effect of antimicrobials was confirmed in a time-kill assay, where concentrations of MIC, 2× MIC, and 4× MIC were evaluated. Some of the applied treatments resulted in inhibition equal or higher than copper-based treatment. Additionally, we assessed the phytotoxicity of carvacrol by foliar application on olive cv. Leccino. The appearance of phytotoxic injuries majorly occurred on the young leaves of olive plants, with the highest proportion of damaged canopy observed when the 2× MIC concentration was applied. Due to its great efficiency against P. savastanoi pv. savastanoi in vitro, these findings highlight the potential of carvacrol as a molecule of interest for the development of environmentally friendly biopesticides. This study also contributes to the advancement of disease management practices in olive cultivation, leading to enhanced crop protection.
Collapse
Affiliation(s)
- Laura Košćak
- Laboratory for Plant Protection, Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Carlo Hugues 8, 52440 Poreč, Croatia;
| | - Janja Lamovšek
- Agricultural Institute of Slovenia, Hacquetova ulica 17, 1000 Ljubljana, Slovenia;
| | - Edyta Đermić
- Department of Plant Pathology, Division of Phytomedicine, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| | - Sara Godena
- Laboratory for Plant Protection, Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Carlo Hugues 8, 52440 Poreč, Croatia;
| |
Collapse
|