1
|
Karthikeyan A, Tabassum N, Jeong GJ, Javaid A, Mani AK, Kim TH, Kim YM, Jung WK, Khan F. Alleviation of mycobacterial infection by impairing motility and biofilm formation via natural and synthetic molecules. World J Microbiol Biotechnol 2025; 41:113. [PMID: 40148661 DOI: 10.1007/s11274-025-04322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Mycobacterium species show distinctive characteristics with significant medical implications. Mycobacteria, including Mycobacterium tuberculosis and non-tuberculous mycobacteria, can form biofilms that facilitate their survival in hostile environments and contribute to development of antibiotic resistance and responses by the host immune system. Mycobacterial biofilm development is a complex process involving multiple genetic determinants, notably mmpL genes, which regulate lipid transport and support cell wall integrity, and the groEL gene, which is essential for biofilm maturation. Sliding motility, a passive form of surface movement observed across various mycobacterial species, is closely associated with biofilm formation and colony morphology. The unique sliding motility and biofilm-forming capabilities of Mycobacterium spp. are pivotal for their pathogenicity and persistence in diverse environments. A comprehensive understanding of the regulatory mechanisms governing these processes is crucial for the development of novel therapeutic strategies against mycobacterial infections. This review provides a detailed examination of our current knowledge regarding mycobacterial biofilm formation and motility, with a focus on regulation of these processes, their impact on pathogenicity, and potential avenues for therapeutic intervention. To this end, the potential of natural and synthetic compounds, including nanomaterials, in combating mycobacterial biofilms and inhibiting sliding motility are discussed as well. These compounds offer new avenues for the treatment of drug-resistant mycobacterial infections.
Collapse
Affiliation(s)
- Abirami Karthikeyan
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Geum-Jae Jeong
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Aqib Javaid
- Interdisciplinary Program of Marine and Fisheries Sciences and Convergent Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Arun Kumar Mani
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed University, Tamil Nadu, Kumbakonam, 612001, India
| | - Tae-Hee Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Interdisciplinary Program of Marine and Fisheries Sciences and Convergent Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan, 48513, Republic of Korea.
- International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
2
|
Nuket P, Kida T, Vas-Umnuay P. Ambient Air-Synthesized CsPbBr 3 Nanocrystals Coupled with TiO 2 Film as an Efficient Hybrid Photoanode for Photoelectrochemical Methanol-to-Formaldehyde Conversion. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65414-65424. [PMID: 39453700 DOI: 10.1021/acsami.4c10039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Due to its exceptional optoelectronic properties in the visible spectrum, cesium lead bromide (CsPbBr3) perovskite has attracted considerable attention in solar-driven organic transformations via photoelectrochemical (PEC) cells. However, the performance of the devices is adversely affected by electron-hole recombination occurring between a transparent conductive substrate, such as fluorine-doped tin dioxide (FTO), and a perovskite layer. Herein, to mitigate this issue, a compact layer of titanium dioxide (TiO2) was employed as both an electron transport layer and a hole blocking layer to diminish charge recombination while facilitating electron transfer in such perovskite material. At the oxidation peak potential of 0.70 V vs Ag/AgNO3, a hybrid photoanode of CsPbBr3/TiO2/FTO exhibited a significant increase in photocurrent density, from 15 to 41 μA/cm2, compared to a configuration without a TiO2 layer. Furthermore, the introduction of methanol as a hole scavenger in the PEC system using the hybrid photoanode facilitated the separation of electron-hole pairs, which led to an enhanced photocurrent density of 60 μA/cm2 and promoted the production of formaldehyde. High-performance liquid chromatography (HPLC) confirmed the generation of formaldehyde at a concentration of 26.69 μM with a Faradaic efficiency of 92% under an applied potential of 0.50 V vs Ag/AgNO3 for 60 min of PEC reaction. In addition to the enhanced PEC performance achieved from this hybrid photoanode, CsPbBr3 nanocrystals (NCs) in this work were synthesized by the modified one-pot method under ambient air, where highly uniform and high-purity NCs were obtained. This work signifies the groundbreaking exploration of CsPbBr3 NCs with TiO2 as a photoelectrode material in the organic-based PEC cells, which efficiently improved the interfacial charge transfer within the photoanode for the conversion of methanol to formaldehyde, marking a significant advancement in the field.
Collapse
Affiliation(s)
- Parina Nuket
- Center of Excellence in Particle and Material Processing Technology, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tetsuya Kida
- Division of Materials Science, Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Paravee Vas-Umnuay
- Center of Excellence in Particle and Material Processing Technology, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Klein E, Lesyuk R, Klinke C. Colloidal Quasi-2D Methylammonium Lead Bromide Perovskite Nanostructures with Tunable Shape and High Chemical Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405758. [PMID: 39286991 PMCID: PMC11600696 DOI: 10.1002/smll.202405758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/22/2024] [Indexed: 09/19/2024]
Abstract
Control over the lateral dimensions of colloidal nanostructures is a complex task which requires a deep understanding of the formation mechanism and reactivity in the corresponding systems. As a result, it provides a well-founded insight to the physical and chemical properties of these materials. In this work, the preparation of quasi-2D methylammonium lead bromide nanostripes and discuss the influence of some specific parameters on the morphology and stability of this material is demonstrated. The variation in the amount of the main ligand dodecylamine gives a large range of structures beginning with 3D brick-like particles at low concentrations, nanostripes at elevated and ultimately nanosheets at large concentrations. The amount of the co-ligand trioctylphosphine can alter the width of the nanostripe shape to a certain degree. The thickness can be adjusted by the amount of the second precursor methylammonium bromide. Additionally, insights are given for the suggested formation mechanism of these anisotropic structures as well as for stability against moisture at ambient conditions in comparison with differently synthesized nanosheet samples.
Collapse
Affiliation(s)
- Eugen Klein
- Institute of PhysicsUniversity of RostockAlbert‐Einstein‐Straße 2318059RostockGermany
| | - Rostyslav Lesyuk
- Institute of PhysicsUniversity of RostockAlbert‐Einstein‐Straße 2318059RostockGermany
- Pidstryhach Institute for applied problems of mechanics and mathematics of NAS of UkraineNaukowa str. 3bLviv79060Ukraine
| | - Christian Klinke
- Institute of PhysicsUniversity of RostockAlbert‐Einstein‐Straße 2318059RostockGermany
- Department “LifeLight & Matter”University of RostockAlbert‐Einstein‐Straße 2518059RostockGermany
- Department of ChemistrySwansea University – Singleton ParkSwanseaSA2 8PPUK
| |
Collapse
|
4
|
Li X, Aftab S, Mukhtar M, Kabir F, Khan MF, Hegazy HH, Akman E. Exploring Nanoscale Perovskite Materials for Next-Generation Photodetectors: A Comprehensive Review and Future Directions. NANO-MICRO LETTERS 2024; 17:28. [PMID: 39343866 PMCID: PMC11439866 DOI: 10.1007/s40820-024-01501-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/05/2024] [Indexed: 10/01/2024]
Abstract
The rapid advancement of nanotechnology has sparked much interest in applying nanoscale perovskite materials for photodetection applications. These materials are promising candidates for next-generation photodetectors (PDs) due to their unique optoelectronic properties and flexible synthesis routes. This review explores the approaches used in the development and use of optoelectronic devices made of different nanoscale perovskite architectures, including quantum dots, nanosheets, nanorods, nanowires, and nanocrystals. Through a thorough analysis of recent literature, the review also addresses common issues like the mechanisms underlying the degradation of perovskite PDs and offers perspectives on potential solutions to improve stability and scalability that impede widespread implementation. In addition, it highlights that photodetection encompasses the detection of light fields in dimensions other than light intensity and suggests potential avenues for future research to overcome these obstacles and fully realize the potential of nanoscale perovskite materials in state-of-the-art photodetection systems. This review provides a comprehensive overview of nanoscale perovskite PDs and guides future research efforts towards improved performance and wider applicability, making it a valuable resource for researchers.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei, 230037, Anhui, People's Republic of China
- Anhui Laboratory of Advanced Laser Technology, Hefei, 230037, Anhui, People's Republic of China
- Nanhu Laser Laboratory, Changsha, 410015, Hunan, People's Republic of China
| | - Sikandar Aftab
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea.
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea.
| | - Maria Mukhtar
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul, 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul, 05006, Republic of Korea
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Muhammad Farooq Khan
- Department of Electrical Engineering, Sejong University, Seoul, 05006, South Korea
| | - Hosameldin Helmy Hegazy
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
- Central Labs, King Khalid University, AlQura'a, P.O. Box 960, 61413, Abha, Saudi Arabia
| | - Erdi Akman
- Scientific and Technological Research and Application Center, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey
| |
Collapse
|
5
|
Giancaspro M, Panniello A, Depalo N, Comparelli R, Striccoli M, Curri ML, Fanizza E. Understanding the Effect of the Synthetic Method and Surface Chemistry on the Properties of CsPbBr 3 Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:81. [PMID: 38202535 PMCID: PMC10780980 DOI: 10.3390/nano14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Over the last decade, the attractive properties of CsPbBr3 nanoparticles (NPs) have driven ever-increasing progress in the development of synthetic procedures to obtain high-quality NPs at high concentrations. Understanding how the properties of NPs are influenced by the composition of the reaction mixture in combination with the specific synthetic methodology is crucial, both for further elucidating the fundamental characteristics of this class of materials and for their manufacturing towards technological applications. This work aims to shed light on this aspect by synthesizing CsPbBr3 NPs by means of two well-assessed synthetic procedures, namely, hot injection (HI) and ligand-assisted reprecipitation (LARP) in non-polar solvents, using PbBr2 and Cs2CO3 as precursors in the presence of already widely investigated ligands. The overall goal is to study and compare the properties of the NPs to understand how each synthetic method influences the NPs' size and/or the optical properties. Reaction composition and conditions are purposely tuned towards the production of nanocubes with narrow size distribution, high emission properties, and the highest achievable concentration. As a result, the formation of bulk crystals as precipitate in LARP limits the achievement of a highly concentrated NP solution. The size of the NPs obtained by LARP seems to be poorly affected by the ligands' nature and the excess bromide, as consequence of bromide-rich solvation agents, effectively results in NPs with excellent emission properties. In contrast, NPs synthesized by HI exhibit high reaction yield, diffusion growth-controlled size, and less striking emission properties, probably ascribed to a bromide-deficient condition.
Collapse
Affiliation(s)
- Mariangela Giancaspro
- Dipartimento di Chimica, University of Bari, Via Orabona 4, 70126 Bari, Italy;
- National Research Council (CNR)-Institute for Physical Chemistry Processes (IPCF), SO Bari, Via Orabona 4, 70126 Bari, Italy; (A.P.); (N.D.); (M.S.)
| | - Annamaria Panniello
- National Research Council (CNR)-Institute for Physical Chemistry Processes (IPCF), SO Bari, Via Orabona 4, 70126 Bari, Italy; (A.P.); (N.D.); (M.S.)
| | - Nicoletta Depalo
- National Research Council (CNR)-Institute for Physical Chemistry Processes (IPCF), SO Bari, Via Orabona 4, 70126 Bari, Italy; (A.P.); (N.D.); (M.S.)
| | - Roberto Comparelli
- National Research Council (CNR)-Institute for Physical Chemistry Processes (IPCF), SO Bari, Via Orabona 4, 70126 Bari, Italy; (A.P.); (N.D.); (M.S.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Bari Research Unit, 50121 Firenze, Italy
| | - Marinella Striccoli
- National Research Council (CNR)-Institute for Physical Chemistry Processes (IPCF), SO Bari, Via Orabona 4, 70126 Bari, Italy; (A.P.); (N.D.); (M.S.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Bari Research Unit, 50121 Firenze, Italy
| | - Maria Lucia Curri
- Dipartimento di Chimica, University of Bari, Via Orabona 4, 70126 Bari, Italy;
- National Research Council (CNR)-Institute for Physical Chemistry Processes (IPCF), SO Bari, Via Orabona 4, 70126 Bari, Italy; (A.P.); (N.D.); (M.S.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Bari Research Unit, 50121 Firenze, Italy
| | - Elisabetta Fanizza
- Dipartimento di Chimica, University of Bari, Via Orabona 4, 70126 Bari, Italy;
- National Research Council (CNR)-Institute for Physical Chemistry Processes (IPCF), SO Bari, Via Orabona 4, 70126 Bari, Italy; (A.P.); (N.D.); (M.S.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Bari Research Unit, 50121 Firenze, Italy
| |
Collapse
|
6
|
Lee EC. Photonic/Electronic Material Performance and Application Based on Nanocrystals and Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2460. [PMID: 37686968 PMCID: PMC10490518 DOI: 10.3390/nano13172460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Electronic, optoelectronic, and optical devices have become integral to the fabric of the modern life, underpinning critical advancements in information technology, energy utilization, biotechnology, environmental monitoring, and nanotechnology [...].
Collapse
Affiliation(s)
- Eun-Cheol Lee
- Department of Nano Science and Technology, Graduate School, Gachon University, Gyeonggi 13120, Republic of Korea;
- Department of Physics, Gachon University, Gyeonggi 13120, Republic of Korea
| |
Collapse
|