1
|
Ermokhina NI, Shvalagin VV, Romanovska NI, Manoryk PA, Barakov RY, Kompanets MO, Sapsay VI, Klymchuk DO, Puziy AM. Synthesis and characterization of different binary and ternary phase mixtures of mesoporous nanocrystalline titanium dioxide. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04474-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
AbstractDifferent phase compositions of mesoporous nanocrystalline TiO2 (meso-nc-TiO2), comprised of anatase (16–100%), rutile (0–70%) and brookite (0–52%) were obtained by sol–gel synthesis with or without hydrothermal treatment (HTT) by means of titanium tetrabutoxide and dibenzo-18-croun-6 as structure-forming agent in the presence of HCl. It was shown, that small amounts of surfactant and/or lanthanum salt as well as HTT determine phase composition and texture of meso-nc-TiO2. All samples were calcined at 500 оС and characterized by SEM, TEM, XRD and N2-adsorption/desorption isotherms. It has been established that photocatalytic properties of almost all obtained samples significantly exceed the photocatalytic activity of Evonik P-25 TiO2 in gas phase ethanol oxidation. The most active sample is characterized by phase composition of anatase (97%)-rutile (3%). It is obvious, that decrease of photocatalytic activity of sample was affected by decrease of anatase phase content. It was shown that the specific surface area of the sample is not a key factor affecting the activity of mixed-phase meso-nc-TiO2 samples in the process of ethanol oxidation.
Collapse
|
2
|
Khan MA, Wallace WT, Sambi J, Rogers DT, Littleton JM, Rankin SE, Knutson BL. Nanoharvesting of bioactive materials from living plant cultures using engineered silica nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110190. [PMID: 31753369 PMCID: PMC6935263 DOI: 10.1016/j.msec.2019.110190] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022]
Abstract
Plant secondary metabolites are valuable therapeutics not readily synthesized by traditional chemistry techniques. Although their enrichment in plant cell cultures is possible following advances in biotechnology, conventional methods of recovery are destructive to the tissues. Nanoharvesting, in which nanoparticles are designed to bind and carry biomolecules out of living cells, offers continuous production of metabolites from plant cultures. Here, nanoharvesting of polyphenolic flavonoids, model plant-derived therapeutics, enriched in Solidago nemoralis hairy root cultures, is performed using engineered mesoporous silica nanoparticles (MSNPs, 165 nm diameter and 950 m2/g surface area) functionalized with both titanium dioxide (TiO2, 425 mg/g particles) for coordination binding sites, and amines (NH2, 145 mg/g particles) to promote cellular internalization. Intracellular uptake and localization of the nanoparticles (in Murashige and Skoog media) in hairy roots were confirmed by tagging the particles with rhodamine B isothiocyanate, incubating the particles with hairy roots, and quenching bulk fluorescence using trypan blue. Nanoharvesting of biologically active flavonoids was demonstrated by observing increased antiradical activity (using 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay) by nanoparticles after exposure to hairy roots (indicating general antioxidant activity), and by the displacement of the radio-ligand [3H]-methyllycaconitine from rat hippocampal nicotinic receptors by solutes recovered from nanoharvested particles (indicating pharmacological activity specific to S. nemoralis flavonoids). Post-nanoharvesting growth suggests that the roots are viable after nanoharvesting, and capable of continued flavonoid synthesis. These observations demonstrate the potential for using engineered nanostructured particles to facilitate continuous isolation of a broad range of biomolecules from living and functioning plant cultures.
Collapse
Affiliation(s)
- M Arif Khan
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - William T Wallace
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | | | | | | | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
3
|
Morphology- and Crystalline Composition-Governed Activity of Titania-Based Photocatalysts: Overview and Perspective. Catalysts 2019. [DOI: 10.3390/catal9121054] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Titania photocatalysts have been intensively examined for both mechanism study and possible commercial applications for more than 30 years. Although various reports have already been published on titania, including comprehensive review papers, the morphology-governed activity, especially for novel nanostructures, has not been reviewed recently. Therefore, this paper presents novel, attractive, and prospective titania photocatalysts, including zero-, one-, two-, and three-dimensional titania structures. The 1D, 2D, and 3D titania structures have been mainly designed for possible applications, e.g., (i) continuous use without the necessity of particulate titania separation, (ii) efficient light harvesting (e.g., inverse opals), (iii) enhanced activity (fast charge carriers’ separation, e.g., 1D nanoplates and 2D nanotubes). It should be pointed out that these structures might be also useful for mechanism investigation, e.g., (i) 3D titania aerogels with gold either incorporated inside the 3D network or supported in the porosity, and (ii) titania mesocrystals with gold deposited either on basal or lateral surfaces, for the clarification of plasmonic photocatalysis. Moreover, 0D nanostructures of special composition and morphology, e.g., magnetic(core)–titania(shell), mixed-phase titania (anatase/rutile/brookite), and faceted titania NPs have been presented, due to their exceptional properties, including easy separation in the magnetic field, high activity, and mechanism clarification, respectively. Although anatase has been usually thought as the most active phase of titania, the co-existence of other crystalline phases accelerates the photocatalytic activity significantly, and thus mixed-phase titania (e.g., famous P25) exhibits high photocatalytic activity for both oxidation and reduction reactions. It is believed that this review might be useful for the architecture design of novel nanomaterials for broad and diverse applications, including environmental purification, energy conversion, synthesis and preparation of “intelligent” surfaces with self-cleaning, antifogging, and antiseptic properties.
Collapse
|
4
|
Ma Y, Lv C, Hou J, Yuan S, Wang Y, Xu P, Gao G, Shi J. 3D Hollow Hierarchical Structures Based on 1D BiOCl Nanorods Intersected with 2D Bi₂WO₆ Nanosheets for Efficient Photocatalysis Under Visible Light. NANOMATERIALS 2019; 9:nano9030322. [PMID: 30823644 PMCID: PMC6473858 DOI: 10.3390/nano9030322] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/16/2022]
Abstract
Constructing elaborate catalysts to prompt the charge carrier separation and transport is critical to developing efficient photocatalytic systems. Here, a hierarchical hollow structure based on 1D/2D BiOCl/Bi2WO6 hybrid materials was fabricated by a precursor chemical engineering method. This hybrid is made up of molten 1D BiOCl nanorods and 2D Bi2WO6 nanosheets. The synergetic effect of the presence of BiOCl and specific interfaces between BiOCl and Bi2WO6 provided efficient interfacial charge transfer of photogenerated carriers under visible light. Seamless BiOCl functions like a noble metal, with platinum-like behavior, accelerating the oxidizing ability of fabricated BiOCl/Bi2WO6 hybrids, which was favorable for the photocatalytic decomposition of organic compounds (3.2 times greater for Rhodamine B (RhB) and 4 times greater for Ciprofloxacin (CIP)) over the Bi2WO6 catalysts. The beneficial interfacial interaction between BiOCl and Bi2WO6 resulting from the unique construction prompted the charge transfer from the conduction band of Bi2WO6 to that of BiOCl. The findings presented in this study provide a cost-effective precursor-mediated strategy to realize the critical and efficient separation of photoinduced carriers in environmental remediation applications.
Collapse
Affiliation(s)
- Yongchao Ma
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Chao Lv
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Jiahui Hou
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shaoteng Yuan
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Yanru Wang
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Ping Xu
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Ge Gao
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Jinsheng Shi
- Department of Chemistry and Pharmaceutical Science, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
5
|
Fu W, Li G, Wang Y, Zeng S, Yan Z, Wang J, Xin S, Zhang L, Wu S, Zhang Z. Facile formation of mesoporous structured mixed-phase (anatase/rutile) TiO2 with enhanced visible light photocatalytic activity. Chem Commun (Camb) 2018; 54:58-61. [DOI: 10.1039/c7cc05750d] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new mesoporous anatase/rutile TiO2 nanocomposite was synthesized at a lower calcination temperature, and exhibited a higher visible light photocatalytic activity.
Collapse
Affiliation(s)
- Weiwei Fu
- Experimental Center
- Shenyang Normal University
- Shenyang 110034
- China
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry
| | - Guode Li
- Experimental Center
- Shenyang Normal University
- Shenyang 110034
- China
| | - Yu Wang
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| | - Shangjing Zeng
- Key Laboratory of Synthetic Rubber
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130012
- China
| | - Zhuojun Yan
- College of Chemistry
- Liaoning University
- Shenyang 110036
- P. R. China
| | - Junwei Wang
- Experimental Center
- Shenyang Normal University
- Shenyang 110034
- China
| | - Shigang Xin
- Experimental Center
- Shenyang Normal University
- Shenyang 110034
- China
| | - Lei Zhang
- Experimental Center
- Shenyang Normal University
- Shenyang 110034
- China
| | - Shiwei Wu
- Experimental Center
- Shenyang Normal University
- Shenyang 110034
- China
| | - Zongtao Zhang
- State Key Laboratory of Inorganic Synthesis & Preparative Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
6
|
Khan MA, Wallace WT, Islam SZ, Nagpure S, Strzalka J, Littleton JM, Rankin SE, Knutson BL. Adsorption and Recovery of Polyphenolic Flavonoids Using TiO 2-Functionalized Mesoporous Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:32114-32125. [PMID: 28825464 DOI: 10.1021/acsami.7b09510] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exploiting specific interactions with titania (TiO2) has been proposed for the separation and recovery of a broad range of biomolecules and natural products, including therapeutic polyphenolic flavonoids which are susceptible to degradation, such as quercetin. Functionalizing mesoporous silica with TiO2 has many potential advantages over bulk and mesoporous TiO2 as an adsorbent for natural products, including robust synthetic approaches leading to high surface area, and stable separation platforms. Here, TiO2-surface-functionalized mesoporous silica nanoparticles (MSNPs) are synthesized and characterized as a function of TiO2 content (up to 636 mg TiO2/g). The adsorption isotherms of two polyphenolic flavonoids, quercetin and rutin, were determined (0.05-10 mg/mL in ethanol), and a 100-fold increase in the adsorption capacity was observed relative to functionalized nonporous particles with similar TiO2 surface coverage. An optimum extent of functionalization (approximately 440 mg TiO2/g particles) is interpreted from characterization techniques including grazing incidence X-ray scattering (GIXS), high-resolution transmission electron microscopy (HRTEM), and nitrogen adsorption, which examined the interplay between the extent of TiO2 functionalization and the accessibility of the porous structures. The recovery of flavonoids is demonstrated using ligand displacement in ethanolic citric acid solution (20% w/v), in which greater than 90% recovery can be achieved in a multistep extraction process. The radical scavenging activity (RSA) of the recovered and particle-bound quercetin as measured by a 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay demonstrates greater than 80% retention of antioxidant activity by both particle-bound and recovered quercetin. These mesoporous titanosilicate materials can serve as a synthetic platform to isolate, recover, and potentially deliver degradation-sensitive natural products to biological systems.
Collapse
Affiliation(s)
- M Arif Khan
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| | - William T Wallace
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Syed Z Islam
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Suraj Nagpure
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Joseph Strzalka
- X-ray Science Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | | | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky , Lexington, Kentucky 40506, United States
| |
Collapse
|
7
|
Ordered Mesoporous Nanomaterials. NANOMATERIALS 2014; 4:902-904. [PMID: 28344256 PMCID: PMC5308455 DOI: 10.3390/nano4040902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 11/16/2022]
Abstract
The Special Issue of Nanomaterials "Ordered Mesoporous Nanomaterials" covers novel synthetic aspects of mesoporous materials and explores their use in diverse areas like drug delivery, photocatalysis, filtration or electrocatalysis. The range of materials tackled includes metals and alloys, aluminosilicates, silica, alumina and transition metal oxides. The variety of materials, synthetic approaches and applications examined is vivid proof of the interest that mesoporous materials spark among researchers world-wide.[...].
Collapse
|