1
|
Marzano M, D'Errico S, Greco F, Falanga AP, Terracciano M, Di Prisco D, Piccialli G, Borbone N, Oliviero G. Polymorphism of G-quadruplexes formed by short oligonucleotides containing a 3'-3' inversion of polarity: From G:C:G:C tetrads to π-π stacked G-wires. Int J Biol Macromol 2023; 253:127062. [PMID: 37748594 DOI: 10.1016/j.ijbiomac.2023.127062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
G-wires are supramolecular DNA structures based on the G-quadruplex (G4) structural motif obtained by the self-assembly of interlocked slipped G-rich oligonucleotide (ON) strands, or by end-to-end stacking of G4 units. Despite the increasing interest towards G-wires due to their potential applications in DNA nanotechnologies, the self-assembly process to obtain G-wires having a predefined length and stability is still neither completely understood nor controlled. In our previous studies, we demonstrated that the d(5'CG2-3'-3'-G2C5') ON, characterized by the presence of a 3'-3'-inversion of polarity site self-assembles into a G-wire structure when annealed in the presence of K+ ions. Herein, by using CD, PAGE, HPLC size exclusion chromatography, and NMR investigations we studied the propensity of shorter analogues having sequences 5'CGn-3'-3'-GmC5' (with n = 1 and 1 ≤ m ≤ 3) to form the corresponding G-quadruplexes and stacked G-wires. The results revealed that the formation of G-wires starting from d(5'CGn-3'-3'-GmC5') ONs is possible only for the sequences having n and m > 1 in which both guanosines flanking the 5'-ending cytosines are not involved into the 3'-3' phosphodiester bond.
Collapse
Affiliation(s)
- Maria Marzano
- CESTEV, University of Naples Federico II, Via Tommaso De Amicis 95, 80131 Naples, Italy
| | - Stefano D'Errico
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Francesca Greco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Andrea Patrizia Falanga
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Monica Terracciano
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Daria Di Prisco
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy
| | - Gennaro Piccialli
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy
| | - Nicola Borbone
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy.
| | - Giorgia Oliviero
- ISBE-IT, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
2
|
Nandi S, Coane C, Villegas AE, Ray A, Di Felice R. The impact of G-quadruplex dynamics on inter-tetrad electronic couplings: a hybrid computational study. Phys Chem Chem Phys 2022; 24:22513-22522. [PMID: 36106845 DOI: 10.1039/d2cp03505g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The G-quadruplex is a fascinating nucleic acid motif with implications in biology, medicine, and nanotechnologies. G-quadruplexes can form in the telomeres at the edges of chromosomes and in other guanine-rich regions of the genome. They can also be engineered for exploitation as biological materials for nanodevices. Their higher stiffness and higher charge transfer rates make them better candidates in nanodevices than duplex DNA. For the development of molecular nanowires, it is important to optimize electron transport along the wire axis. One powerful basis to do so is by manipulating the structure, based on known effects that structural changes have on electron transport. Here, we investigate such effects, by a combination of classical simulations of the structure and dynamics and quantum calculations of electronic couplings. We find that this structure-function relationship is complex. A single helix shape parameter alone does not embody such complexity, but rather a combination of distances and angles between stacked bases influences charge transfer efficiency. By analyzing linear combinations of shape descriptors for different topologies, we identify the structural features that most affect charge transfer efficiency. We discuss the transferability of the proposed model and the limiting effects of inherent flexibility.
Collapse
Affiliation(s)
- Samprita Nandi
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA.
| | - Colin Coane
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA.
| | - Angel-Emilio Villegas
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA.
| | - Angana Ray
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA.
| | - Rosa Di Felice
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA. .,Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.,CNR Institute of Nanoscience, 41125 Modena, Italy
| |
Collapse
|
3
|
Balanikas E, Martinez-Fernandez L, Baldacchino G, Markovitsi D. Electron Holes in G-Quadruplexes: The Role of Adenine Ending Groups. Int J Mol Sci 2021; 22:ijms222413436. [PMID: 34948235 PMCID: PMC8704496 DOI: 10.3390/ijms222413436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
The study deals with four-stranded DNA structures (G-Quadruplexes), known to undergo ionization upon direct absorption of low-energy UV photons. Combining quantum chemistry calculations and time-resolved absorption spectroscopy with 266 nm excitation, it focuses on the electron holes generated in tetramolecular systems with adenine groups at the ends. Our computations show that the electron hole is placed in a single guanine site, whose location depends on the position of the adenines at the 3' or 5' ends. This position also affects significantly the electronic absorption spectrum of (G+)● radical cations. Their decay is highly anisotropic, composed of a fast process (<2 µs), followed by a slower one occurring in ~20 µs. On the one hand, they undergo deprotonation to (G-H2)● radicals and, on the other, they give rise to a reaction product absorbing in the 300-500 nm spectral domain.
Collapse
Affiliation(s)
- Evangelos Balanikas
- LIDYL, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (E.B.); (G.B.)
| | - Lara Martinez-Fernandez
- Departamento de Química, Modúlo 13, Facultad de Ciencias and IADCHEM (Institute for Advanced Research in Chemistry), Campus de Excelencia UAM-CSIC, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Correspondence: (L.M.-F.); or (D.M.)
| | - Gérard Baldacchino
- LIDYL, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (E.B.); (G.B.)
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France; (E.B.); (G.B.)
- Correspondence: (L.M.-F.); or (D.M.)
| |
Collapse
|
4
|
Balanikas E, Martinez-Fernandez L, Improta R, Podbevšek P, Baldacchino G, Markovitsi D. The Structural Duality of Nucleobases in Guanine Quadruplexes Controls Their Low-Energy Photoionization. J Phys Chem Lett 2021; 12:8309-8313. [PMID: 34428044 DOI: 10.1021/acs.jpclett.1c01846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Guanine quadruplexes are four-stranded DNA/RNA structures composed of a guanine core (vertically stacked guanine tetrads) and peripheral groups (dangling ends and/or loops). Such a dual structural arrangement of the nucleobases favors their photoionization at energies significantly lower than the guanine ionization potential. This effect is important with respect to the oxidative DNA damage and for applications in the field of optoelectronics. Photoionization quantum yields, determined at 266 nm by nanosecond transient absorption spectroscopy, strongly depend on both the type and position of the peripheral nucleobases. The highest value (1.5 × 10-2) is found for the tetramolecular structure (AG4A)4 in which adenines are intermittently stacked on the adjacent guanine tetrads, as determined by nuclear magnetic resonance spectroscopy. Quantum chemistry calculations show that peripheral nucleobases interfere in a key step preceding electron ejection: charge separation, initiated by the population of charge transfer states during the relaxation of electronic excited states.
Collapse
Affiliation(s)
| | - Lara Martinez-Fernandez
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Roberto Improta
- Istituto Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Mezzocannone 16, I-80134 Napoli, Italy
| | - Peter Podbevšek
- Slovenian NMR Center, National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Gérard Baldacchino
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Mantela M, Morphis A, Lambropoulos K, Simserides C, Di Felice R. Effects of Structural Dynamics on Charge Carrier Transfer in B-DNA: A Combined MD and RT-TDDFT Study. J Phys Chem B 2021; 125:3986-4003. [PMID: 33857373 DOI: 10.1021/acs.jpcb.0c11489] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hole transfer along the axis of duplex DNA has been the focus of physical chemistry research for decades, with implications in diverse fields, from nanotechnology to cell oxidative damage. Computational approaches are particularly amenable for this problem, to complement experimental data for interpretation of transfer mechanisms. To be predictive, computational results need to account for the inherent mobility of biological molecules during the time frame of experimental measurements. Here, we address the structural variability of B-DNA and its effects on hole transfer in a combined molecular dynamics (MD) and real-time time-dependent density functional theory (RT-TDDFT) study. Our results show that quantities that characterize the charge transfer process, such as the time-dependent dipole moment and hole population at a specific site, are sensitive to structural changes that occur on the nanosecond time scale. We extend the range of physical properties for which such a correlation has been observed, further establishing the fact that quantitative computational data on charge transfer properties should include statistical averages. Furthermore, we use the RT-TDDFT results to assess an efficient tight-binding method suitable for high-throughput predictions. We demonstrate that charge transfer, although affected by structural variability, on average, remains strong in AA and GG dimers.
Collapse
Affiliation(s)
- Marilena Mantela
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece
| | - Andreas Morphis
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece
| | - Konstantinos Lambropoulos
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece
| | - Constantinos Simserides
- Department of Physics, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos GR-15784, Athens, Greece
| | | |
Collapse
|
6
|
Balanikas E, Banyasz A, Douki T, Baldacchino G, Markovitsi D. Guanine Radicals Induced in DNA by Low-Energy Photoionization. Acc Chem Res 2020; 53:1511-1519. [PMID: 32786340 DOI: 10.1021/acs.accounts.0c00245] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Guanine (G) radicals are precursors to DNA oxidative damage, correlated with carcinogenesis and aging. During the past few years, we demonstrated clearly an intriguing effect: G radicals can be generated upon direct absorption of UV radiation with energy significantly lower than the G ionization potential. Using nanosecond transient absorption spectroscopy, we studied the primary species, ejected electrons and guanine radicals, which result from photoionization of various DNA systems in aqueous solution.The DNA propensity to undergo electron detachment at low photon energies greatly depends on its secondary structure. Undetected for monomers or unstacked oligomers, this propensity may be 1 order of magnitude higher for G-quadruplexes than for duplexes. The experimental results suggest nonvertical processes, associated with the relaxation of electronic excited states. Theoretical studies are required to validate the mechanism and determine the factors that come into play. Such a mechanism, which may be operative over a broad excitation wavelength range, explains the occurrence of oxidative damage observed upon UVB and UVA irradiation.Quantification of G radical populations and their time evolution questions some widespread views. It appears that G radicals may be generated with the same probability as pyrimidine dimers, which are considered to be the major lesions induced upon absorption of low-energy UV radiation by DNA. As most radical cations undergo deprotonation, the vast majority of the final reaction products is expected to stem from long-lived deprotonated radicals. Consequently, when G radical cations are involved, the widely used oxidation marker 8-oxodG is not representative of the oxidative damage.Beyond the biological consequences, photogeneration of electron holes in G-quadruplexes may inspire applications in nanoelectronics; although four-stranded structures are currently studied as molecular wires, their behavior as photoconductors has not been explored so far.In the present Account, after highlighting some key experimental issues, we first describe the photoionization process, and then, we focus on radicals. We use as show-cases new results obtained for genomic DNA and Oxytricha G-quadruplexes. Generation and reaction dynamics of G radicals in these systems provide a representative picture of the phenomena reported previously for duplexes and G-quadruplexes, respectively.
Collapse
Affiliation(s)
| | - Akos Banyasz
- Univ Lyon, ENS de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France
| | - Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble France
| | - Gérard Baldacchino
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| | - Dimitra Markovitsi
- Université Paris-Saclay, CEA, CNRS, LIDYL, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
7
|
Behmand B, Balanikas E, Martinez-Fernandez L, Improta R, Banyasz A, Baldacchino G, Markovitsi D. Potassium Ions Enhance Guanine Radical Generation upon Absorption of Low-Energy Photons by G-Quadruplexes and Modify Their Reactivity. J Phys Chem Lett 2020; 11:1305-1309. [PMID: 31967478 DOI: 10.1021/acs.jpclett.9b03667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
G-Quadruplexes are formed by guanine rich DNA/RNA sequences in the presence of metal ions, which occupy the central cavity of these four-stranded structures. We show that these metal ions have a significant effect on the photogeneration and the reactivity of guanine radicals. Transient absorption experiments on G-quadruplexes formed by association of four TGGGGT strands in the presence of K+ reveal that the quantum yield of one-photon ionization at 266 nm (8.1 × 10-3) is twice as high as that determined in the presence of Na+. Replacement of Na+ with K+ also suppresses one reaction path involving deprotonated radicals, (G-H2)• → (G-H1)• tautomerization. Such behavior shows that the underlying mechanisms are governed by dynamical processes, controlled by the mobility of metal ions, which is higher for Na+ than for K+. These findings may contribute to our understanding of the ultraviolet-induced DNA damage and optimize optoelectronic devices based on four-stranded structures, beyond DNA.
Collapse
Affiliation(s)
- Behnaz Behmand
- Université Paris-Saclay , CEA, CNRS, LIDYL , F-91191 Gif-sur-Yvette , France
| | - Evangelos Balanikas
- Université Paris-Saclay , CEA, CNRS, LIDYL , F-91191 Gif-sur-Yvette , France
| | - Lara Martinez-Fernandez
- Departamento de Quı́mica, Facultad de Ciencias , Universidad Autónoma de Madrid , 28049 Cantoblanco , Spain
- IADCHEM, Institute for Advanced Research in Chemistry , Universidad Autónoma de Madrid , 28049 Cantoblanco , Spain
| | - Roberto Improta
- Istituto Biostrutture e Bioimmagini-Consiglio Nazionale delle Ricerche , Via Mezzocannone 16 , I-80134 Napoli , Italy
| | - Akos Banyasz
- Univ Lyon, ENS de Lyon, CNRS UMR 5182 , Université Claude Bernard Lyon 1, Laboratoire de Chimie , F-69342 Lyon , France
| | - Gérard Baldacchino
- Université Paris-Saclay , CEA, CNRS, LIDYL , F-91191 Gif-sur-Yvette , France
| | - Dimitra Markovitsi
- Université Paris-Saclay , CEA, CNRS, LIDYL , F-91191 Gif-sur-Yvette , France
| |
Collapse
|
8
|
Marzano M, Falanga AP, Dardano P, D'Errico S, Rea I, Terracciano M, De Stefano L, Piccialli G, Borbone N, Oliviero G. π–π stacked DNA G-wire nanostructures formed by a short G-rich oligonucleotide containing a 3′–3′ inversion of polarity site. Org Chem Front 2020. [DOI: 10.1039/d0qo00561d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rod-shaped G-wire assemblies potentially useful to obtain new hybrid and conducting materials were obtained by annealing short G-rich oligonucleotides incorporating a 3′–3′ inversion of polarity site in the presence of potassium or ammonium ions.
Collapse
Affiliation(s)
- Maria Marzano
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Andrea P. Falanga
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems
- National Council Research of Italy
- 80131 – Naples
- Italy
| | | | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems
- National Council Research of Italy
- 80131 – Naples
- Italy
| | - Monica Terracciano
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems
- National Council Research of Italy
- 80131 – Naples
- Italy
| | - Gennaro Piccialli
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Nicola Borbone
- Department of Pharmacy
- University of Naples Federico II
- 80131 – Naples
- Italy
| | - Giorgia Oliviero
- Department of Molecular Medicine and Medical Biotechnologies
- University of Naples Federico II
- 80131 – Naples
- Italy
| |
Collapse
|
9
|
Banyasz A, Balanikas E, Martinez-Fernandez L, Baldacchino G, Douki T, Improta R, Markovitsi D. Radicals Generated in Tetramolecular Guanine Quadruplexes by Photoionization: Spectral and Dynamical Features. J Phys Chem B 2019; 123:4950-4957. [PMID: 31117607 DOI: 10.1021/acs.jpcb.9b02637] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G-quadruplexes are four-stranded DNA structures playing a key role in many biological functions and are promising for applications in the field of nanoelectronics. Characterizing the generation and fate of radical cations (electron holes) within these systems is important in relation to the DNA oxidative damage and/or conductivity issues. This study focuses on guanine radicals in G-quadruplexes formed by association of four TGGGGT strands in the presence of Na+ cations, (TG4T)4/Na+. Using nanosecond transient spectroscopy with 266 nm excitation, we quantitatively characterize hydrated ejected electrons and three types of guanine radicals. We show that, at an energy lower by 2.7 eV than the guanine ionization potential, one-photon ionization occurs with quantum yield of (3.5 ± 0.5) × 10-3. Deprotonation of the radical cations is completed within 20 μs, leading to the formation of (G-H2)• radicals, following a strongly nonexponential decay pattern. Within 10 ms, the latter undergoes tautomerization to deprotonated (G-H1)• radicals. The dynamics of the various radicals determined for (TG4T)4/Na+, in connection to those reported previously for telomeric G-quadruplexes TEL21/Na+, is correlated with energetic factors computed by quantum chemical methods. The faster deprotonation of radical cations in (TG4T)4/Na+ compared to TEL21/Na+ explains that irradiation of the former does not generate 8-oxodGuo, which is readily detected by high-performance liquid chromatography/mass spectrometry in the case of TEL21/Na+.
Collapse
Affiliation(s)
- Akos Banyasz
- LIDYL, CEA, CNRS, Université Paris-Saclay , F-91191 Gif-sur-Yvette , France.,Univ Lyon, ENS de Lyon, CNRS UMR 5182 , Université Claude Bernard Lyon 1, Laboratoire de Chimie , F-69342 Lyon , France
| | | | - Lara Martinez-Fernandez
- LIDYL, CEA, CNRS, Université Paris-Saclay , F-91191 Gif-sur-Yvette , France.,Departamento de Química , Universidad Autónoma de Madrid , c/ Francisco Tomás y Valiente 7, Cantoblanco , 28049 Madrid , Spain
| | - Gérard Baldacchino
- LIDYL, CEA, CNRS, Université Paris-Saclay , F-91191 Gif-sur-Yvette , France
| | - Thierry Douki
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES UMR , 5819 Grenoble , France
| | - Roberto Improta
- LIDYL, CEA, CNRS, Université Paris-Saclay , F-91191 Gif-sur-Yvette , France.,Istituto Biostrutture e Bioimmagini-Consiglio Nazionale delle Ricerche , Via Mezzocannone 16 , I-80134 Napoli , Italy
| | - Dimitra Markovitsi
- LIDYL, CEA, CNRS, Université Paris-Saclay , F-91191 Gif-sur-Yvette , France
| |
Collapse
|