1
|
Kang DH, Kim NK, Lee W, Kang HW. Geometric feature extraction in nanofiber membrane image based on convolution neural network for surface roughness prediction. Heliyon 2024; 10:e35358. [PMID: 39170369 PMCID: PMC11336630 DOI: 10.1016/j.heliyon.2024.e35358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
As a technique in artificial intelligence, a convolution neural network model has been utilized to extract average surface roughness from the geometric characteristics of a membrane image featuring micro- and nanostructures. For surface roughness measurement, e.g. atomic force microscopy and optical profiler, the previous methods have been performed to analyze a porous membrane surface on an interest of region with a few micrometers of the restricted area according to the depth resolution. However, an image from the scanning electron microscope, combined with the feature extraction process, provides clarity on surface roughness for multiple areas with various depth resolutions. Through image preprocessing, the geometric pattern is elucidated by amplifying the disparity in pixel intensity values between the bright and dark regions of the image. The geometric pattern of the binary image and magnitude spectrum confirmed the classification of the surface roughness of images in a categorical scatter plot. A group of cropped images from an original image is used to predict the logarithmic average surface roughness values. The model predicted 4.80 % MAPE for the test dataset. The method of extracting geometric patterns through a feature map-based CNN, combined with a statistical approach, suggests an indirect surface measurement. The process is achieved through a bundle of predicted output data, which helps reduce the randomness error of the structural characteristics. A novel feature extraction approach of CNN with statistical analysis is a valuable method for revealing hidden physical characteristics in surface geometries from irregular pixel patterns in an array of images.
Collapse
Affiliation(s)
- Dong Hee Kang
- Department of Mechanical Engineering, Chonnam National University, 77 Youngbong-ro, Buk-Gu, Gwangju, 61186, Republic of Korea
- Department of Industrial and Systems Engineering, Texas A&M University, College station, TX, 77843, United States
| | - Na Kyong Kim
- Green Energy System Research Center, Korea Automotive Technology Institute, 55 Jingoksandanjungang-ro, Gwangsan-Gu, Gwangju, 62465, Republic of Korea
| | - Wonoh Lee
- Department of Mechanical Engineering, Chonnam National University, 77 Youngbong-ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| | - Hyun Wook Kang
- Department of Mechanical Engineering, Chonnam National University, 77 Youngbong-ro, Buk-Gu, Gwangju, 61186, Republic of Korea
| |
Collapse
|
2
|
Chen Y, Xu W, Zheng X, Huang X, Dan N, Wang M, Li Y, Li Z, Dan W, Wang Y. Two-Layered Biomimetic Flexible Self-Powered Electrical Stimulator for Promoting Wound Healing. Biomacromolecules 2023; 24:1483-1496. [PMID: 36802497 DOI: 10.1021/acs.biomac.2c01520] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The repair of wound damage has been a common problem in clinic for a long time. Inspired by the electroactive nature of tissues and the electrical stimulation of wounds in clinical practice, the next generation of wound therapy with self-powered electrical stimulator is expected to achieve the desired therapeutic effect. In this work, a two-layered self-powered electrical-stimulator-based wound dressing (SEWD) was designed through the on-demand integration of the bionic tree-like piezoelectric nanofiber and the adhesive hydrogel with biomimetic electrical activity. SEWD has good mechanical properties, adhesion properties, self-powered properties, high sensitivity, and biocompatibility. The interface between the two layers was well integrated and relatively independent. Herein, the piezoelectric nanofibers were prepared by P(VDF-TrFE) electrospinning, and the morphology of the nanofibers was controlled by adjusting the electrical conductivity of the electrospinning solution. Benefiting from its bionic dendritic structure, the prepared piezoelectric nanofibers had better mechanical properties and piezoelectric sensitivity than native P(VDF-TrFE) nanofibers, which can convert tiny forces into electrical signals as a power source for tissue repair. At the same time, the designed conductive adhesive hydrogel was inspired by the adhesive properties of natural mussels and the redox electron pairs formed by catechol and metal ions. It has bionic electrical activity matching with the tissue and can conduct the electrical signal generated by the piezoelectric effect to the wound site so as to facilitate the electrical stimulation treatment of tissue repair. In addition, in vitro and in vivo experiments demonstrated that SEWD converts mechanical energy into electricity to stimulate cell proliferation and wound healing. The proposed healing strategy for the effective treatment of skin injury was provided by developing self-powered wound dressing, which is of great significance to the rapid, safe, and effective promotion of wound healing.
Collapse
Affiliation(s)
- Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Wenxin Xu
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xin Zheng
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xuantao Huang
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Meng Wang
- Department of Orthopaedics, Strategic Support Force Medical Center, Beijing 100101, P. R. China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengjun Li
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Weihua Dan
- Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, China
- Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu 610065, China
| |
Collapse
|
3
|
Magnani A, Capaccioli S, Azimi B, Danti S, Labardi M. Local Piezoelectric Response of Polymer/Ceramic Nanocomposite Fibers. Polymers (Basel) 2022; 14:5379. [PMID: 36559746 PMCID: PMC9783531 DOI: 10.3390/polym14245379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Effective converse piezoelectric coefficient (d33,eff) mapping of poly(vinylidene fluoride) (PVDF) nanofibers with ceramic BaTiO3 nanoparticle inclusions obtained by electrospinning was carried out by piezoresponse force microscopy (PFM) in a peculiar dynamic mode, namely constant-excitation frequency-modulation (CE-FM), particularly suitable for the analysis of compliant materials. Mapping of single nanocomposite fibers was carried out to demonstrate the ability of CE-FM-PFM to investigate the nanostructure of semicrystalline polymers well above their glass transition temperature, such as PVDF, by revealing the distribution of piezoelectric activity of the nanofiber, as well as of the embedded nanoparticles employed. A decreased piezoelectric activity at the nanoparticle site compared to the polymeric fiber was found. This evidence can be rationalized in terms of a tradeoff between the dielectric constants and piezoelectric coefficients of the component materials, as well as on the mutual orientation of polar axes.
Collapse
Affiliation(s)
- Aurora Magnani
- Dipartimento di Fisica “Enrico Fermi”, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy
| | - Simone Capaccioli
- Dipartimento di Fisica “Enrico Fermi”, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy
- CNR-IPCF, Pisa Unit, Largo Pontecorvo 3, 56127 Pisa, Italy
- CISUP, Centro per l’Integrazione della Strumentazione dell’Università di Pisa, 56126 Pisa, Italy
| | - Bahareh Azimi
- Dipartimento di Ingegneria Civile ed Industriale (DICI), Università di Pisa, L. Lazzarino 1, 56122 Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Serena Danti
- Dipartimento di Ingegneria Civile ed Industriale (DICI), Università di Pisa, L. Lazzarino 1, 56122 Pisa, Italy
| | | |
Collapse
|
4
|
Zhu Y, Sun F, Jia C, Zhao T, Mao Y. A Stretchable and Self-Healing Hybrid Nano-Generator for Human Motion Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:104. [PMID: 35010054 PMCID: PMC8746449 DOI: 10.3390/nano12010104] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 01/16/2023]
Abstract
Transparent stretchable wearable hybrid nano-generators present great opportunities in motion sensing, motion monitoring, and human-computer interaction. Herein, we report a piezoelectric-triboelectric sport sensor (PTSS) which is composed of TENG, PENG, and a flexible transparent stretchable self-healing hydrogel electrode. The piezoelectric effect and the triboelectric effect are coupled by a contact separation mode. According to this effect, the PTSS shows a wide monitoring range. It can be used to monitor human multi-dimensional motions such as bend, twist, and rotate motions, including the screw pull motion of table tennis and the 301C skill of diving. In addition, the flexible transparent stretchable self-healing hydrogel is used as the electrode, which can meet most of the motion and sensing requirements and presents the characteristics of high flexibility, high transparency, high stretchability, and self-healing behavior. The whole sensing system can transmit signals through Bluetooth devices. The flexible, transparent, and stretchable wearable hybrid nanogenerator can be used as a wearable motion monitoring sensor, which provides a new strategy for the sports field, motion monitoring, and human-computer interaction.
Collapse
Affiliation(s)
- Yongsheng Zhu
- Physical Education Department, Northeastern University, Shenyang 110819, China; (Y.Z.); (F.S.); (C.J.)
| | - Fengxin Sun
- Physical Education Department, Northeastern University, Shenyang 110819, China; (Y.Z.); (F.S.); (C.J.)
| | - Changjun Jia
- Physical Education Department, Northeastern University, Shenyang 110819, China; (Y.Z.); (F.S.); (C.J.)
| | - Tianming Zhao
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yupeng Mao
- Physical Education Department, Northeastern University, Shenyang 110819, China; (Y.Z.); (F.S.); (C.J.)
| |
Collapse
|
5
|
Chen Y, Qiu F, Tang C, Xing Z, Zhao X. Controllable self-patterning behaviours of flexible self-assembling peptide nanofibers. NANOSCALE ADVANCES 2021; 3:1603-1611. [PMID: 36132572 PMCID: PMC9419878 DOI: 10.1039/d0na00892c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/22/2021] [Indexed: 02/05/2023]
Abstract
Extremely long flexible self-assembling peptide nanofibers can be manipulated to form various two-dimensional patterns.
Collapse
Affiliation(s)
- Yongzhu Chen
- Laboratory of Anaesthesia and Critical Care Medicine
- Translational Neuroscience Centre
- National Clinical Research Center for Geriatrics
- West China Hospital
- Sichuan University
| | - Feng Qiu
- Laboratory of Anaesthesia and Critical Care Medicine
- Translational Neuroscience Centre
- National Clinical Research Center for Geriatrics
- West China Hospital
- Sichuan University
| | - Chengkang Tang
- Institute for Nanobiomedical Technology and Membrane Biology
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Zhihua Xing
- Institute for Nanobiomedical Technology and Membrane Biology
- West China Hospital
- Sichuan University
- Chengdu
- China
| | - Xiaojun Zhao
- Institute for Nanobiomedical Technology and Membrane Biology
- West China Hospital
- Sichuan University
- Chengdu
- China
| |
Collapse
|
6
|
Gogneau N. 1D Nanostructure-Based Piezo-Generators. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:nano9101474. [PMID: 31627340 PMCID: PMC6835851 DOI: 10.3390/nano9101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
With the amount of connected objects constantly on the rise, both in our daily life and in high-technology applications, it becomes critical to deal with their associated increase in energy consumption [...].
Collapse
Affiliation(s)
- Noelle Gogneau
- Center for Nanosciences and Nanotechnologies-CNRS-UMR9001, Paris-Sud University, Paris-Saclay University, 10 Boulevard Thomas Gobert, F-91120 Palaiseau, France.
| |
Collapse
|
7
|
The Relationships between Process Parameters and Polymeric Nanofibers Fabricated Using a Modified Coaxial Electrospinning. NANOMATERIALS 2019; 9:nano9060843. [PMID: 31159474 PMCID: PMC6630586 DOI: 10.3390/nano9060843] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 02/02/2023]
Abstract
The concrete relationship between the process parameters and nanoproduct properties is an important challenge for applying nanotechnology to produce functional nanomaterials. In this study, the relationships between series of process parameters and the medicated nanofibers’ diameter were investigated. With an electrospinnable solution of hydroxypropyl methylcellulose (HPMC) and ketoprofen as the core fluid, four kinds of nanofibers were prepared with ethanol as a sheath fluid and under the variable applied voltages. Based on these nanofibers, a series of relationships between the process parameters and the nanofibers’ diameters (D) were disclosed, such as with the height of the Taylor cone (H, D = 125 + 363H), with the angle of the Taylor cone (α, D = 1576 − 19α), with the length of the straight fluid jet (L, D = 285 + 209L), and with the spreading angle of the instable region (θ, D = 2342 − 43θ). In vitro dissolution tests verified that the smaller the diameters, the faster ketoprofen (KET) was released from the HPMC nanofibers. These concrete process-property relationships should provide a way to achieve new knowledge about the electrostatic energy-fluid interactions, and to meanwhile improve researchers’ capability to optimize the coaxial process conditions to achieve the desired nanoproducts.
Collapse
|
8
|
Ji SH, Cho YS, Yun JS. Wearable Core-Shell Piezoelectric Nanofiber Yarns for Body Movement Energy Harvesting. NANOMATERIALS 2019; 9:nano9040555. [PMID: 30987406 PMCID: PMC6523963 DOI: 10.3390/nano9040555] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 03/28/2019] [Accepted: 04/02/2019] [Indexed: 11/16/2022]
Abstract
In an effort to fabricate a wearable piezoelectric energy harvester based on core-shell piezoelectric yarns with external electrodes, flexible piezoelectric nanofibers of BNT-ST (0.78Bi0.5Na0.5TiO₃-0.22SrTiO₃) and polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) were initially electrospun. Subsequently, core-shell piezoelectric nanofiber yarns were prepared by twining the yarns around a conductive thread. To create the outer electrode layers, the core-shell piezoelectric nanofiber yarns were braided with conductive thread. Core-shell piezoelectric nanofiber yarns with external electrodes were then directly stitched onto the fabric. In bending tests, the output voltages were investigated according to the total length, effective area, and stitching interval of the piezoelectric yarns. Stitching patterns of the piezoelectric yarns on the fabric were optimized based on these results. The output voltages of the stitched piezoelectric yarns on the fabric were improved with an increase in the pressure, and the output voltage characteristics were investigated according to various body movements of bending and pressing conditions.
Collapse
Affiliation(s)
- Sang Hyun Ji
- Energy& Environmental Division, Korea Institute of Ceramic Engineering and Technology, 101, Soho-ro, Jinju 52851, Korea;
| | - Yong-Soo Cho
- Department of Materials Science & Engineering, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03021, Korea;
| | - Ji Sun Yun
- Energy& Environmental Division, Korea Institute of Ceramic Engineering and Technology, 101, Soho-ro, Jinju 52851, Korea;
- Correspondence: ; Tel.: +82-55-792-2675; Fax: +82-55-792-2651
| |
Collapse
|
9
|
Han J, Li D, Zhao C, Wang X, Li J, Wu X. Highly Sensitive Impact Sensor Based on PVDF-TrFE/Nano-ZnO Composite Thin Film. SENSORS (BASEL, SWITZERLAND) 2019; 19:E830. [PMID: 30781598 PMCID: PMC6412550 DOI: 10.3390/s19040830] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 11/23/2022]
Abstract
A thin film of polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) has good flexibility and simple preparation process. More importantly, compared with PVDF, its piezoelectric β-phase can be easily formed without mechanical stretching. However, its piezoelectricity is relatively lower. Therefore, at present, PVDF-TrFE is always compounded with other kinds of piezoelectric materials to solve this problem. The effect of nano-ZnO doping amount on the sensing characteristics of the piezoelectric films was studied. PVDF-TrFE/nano-ZnO films with different nano-ZnO contents were prepared by spin coating process and packaged. The dispersion of nano-ZnO dopants and the crystallinity of β-phase in piezoelectric films with different nano-ZnO contents were observed by scanning electron microscopy and X-ray diffraction, and the piezoelectric strain constants and dielectric constants were measured, respectively. The effect of different nano-ZnO contents on the output performance of the piezoelectric sensor was obtained by a series of impact experiments. The results show that the piezoelectric strain constant and dielectric constant can be increased by doping nano-ZnO in PVDF-TrFE. Moreover, the doping amount of nano-ZnO in PVDF-TrFE is of great significance for improving the piezoelectric properties of PVDF-TrFE/nano-ZnO thin films. Among the prepared piezoelectric films, the output voltage of PVDF-TrFE/nano-ZnO piezoelectric sensor with 7.5% nano-ZnO doping amount is about 5.5 times that of pure PVDF-TrFE. Thus, the optimal range of the doping amount for nano-ZnO is about 4⁻10%.
Collapse
Affiliation(s)
- Jing Han
- College of Mechatronic Engineering, North University of China, Taiyuan 030051, China.
| | - Dong Li
- College of Mechatronic Engineering, North University of China, Taiyuan 030051, China.
| | - Chunmao Zhao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| | - Xiaoyan Wang
- College of Mechatronic Engineering, North University of China, Taiyuan 030051, China.
| | - Jie Li
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| | - Xinzhe Wu
- College of Mechatronic Engineering, North University of China, Taiyuan 030051, China.
| |
Collapse
|
10
|
Kim HJ, Song YW, Namgung SD, Song MK, Yang S, Kwon JY. Optical properties of the crumpled pattern of selectively layered MoS 2. OPTICS LETTERS 2018; 43:4590-4593. [PMID: 30272690 DOI: 10.1364/ol.43.004590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/24/2018] [Indexed: 06/08/2023]
Abstract
Crumple-structured two-dimensional MoS2 was evaluated as an essential element for future optoelectronic and stretchable devices owing to its interesting optical properties. This Letter reports the characteristics of the crumpled structure of MoS2 directly layered on a MoS2 sheet by chemical vapor deposition. The crumpling structure is presented as a method for selectively layering MoS2 with crumpled layered patterning and tunable optical properties as a crumpled structure on a single substrate. Optical analysis by the fast Fourier transform revealed the distribution characteristics of the crumple structure, and a Raman, photoluminescence, and optical absorption analysis confirmed the change in peak shift and intensity according to the degree of the crumpled structure. This material has potential future optoelectronic applications.
Collapse
|