1
|
Harrabi K, Mekki A, Milošević MV. Characteristic Times for Gap Relaxation and Heat Escape in Nanothin NbTi Superconducting Filaments: Thickness Dependence and Effect of Substrate. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1585. [PMID: 39404312 PMCID: PMC11478642 DOI: 10.3390/nano14191585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/30/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
We measured the temporal voltage response of NbTi superconducting filaments with varied nanoscale thicknesses to step current pulses that induce non-equilibrium superconducting states governed by a hot spot mechanism. Such detected voltage emerges after a delay time td, which is intimately connected to the gap relaxation and heat escape times. By employing time-dependent Ginzburg-Landau theory to link the delay time to the applied current, we determined that the gap relaxation time depends linearly on film thickness, aligning with the acoustic mismatch theory for phonon transmission at the superconductor-substrate interface. We thereby find a gap relaxation time of 104 ps per nm of thickness for NbTi films on polished sapphire. We further show that interfacial interaction with the substrate significantly impacts the gap relaxation time, with observed values of 9 ns on SiOx, 6.8 ns on fused silica, and 5.2 ns on sapphire for a 50 nm thick NbTi strip at T=5.75 K. These insights are valuable for optimizing superconducting sensing technologies, particularly the single-photon detectors that operate in the transient regime of nanothin superconducting bridges and filaments.
Collapse
Affiliation(s)
- Khalil Harrabi
- Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Interdisciplinary Research Center (RC) for Intelligent Secure Systems, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Abdelkrim Mekki
- Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia;
- Interdisciplinary Research Center (RC) for Advanced Material, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Milorad V. Milošević
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| |
Collapse
|
2
|
Cheng R, Goteti US, Walker H, Krause KM, Oeding L, Hamilton MC. Toward Learning in Neuromorphic Circuits Based on Quantum Phase Slip Junctions. Front Neurosci 2021; 15:765883. [PMID: 34819835 PMCID: PMC8606638 DOI: 10.3389/fnins.2021.765883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
We explore the use of superconducting quantum phase slip junctions (QPSJs), an electromagnetic dual to Josephson Junctions (JJs), in neuromorphic circuits. These small circuits could serve as the building blocks of neuromorphic circuits for machine learning applications because they exhibit desirable properties such as inherent ultra-low energy per operation, high speed, dense integration, negligible loss, and natural spiking responses. In addition, they have a relatively straight-forward micro/nano fabrication, which shows promise for implementation of an enormous number of lossless interconnections that are required to realize complex neuromorphic systems. We simulate QPSJ-only, as well as hybrid QPSJ + JJ circuits for application in neuromorphic circuits including artificial synapses and neurons, as well as fan-in and fan-out circuits. We also design and simulate learning circuits, where a simplified spike timing dependent plasticity rule is realized to provide potential learning mechanisms. We also take an alternative approach, which shows potential to overcome some of the expected challenges of QPSJ-based neuromorphic circuits, via QPSJ-based charge islands coupled together to generate non-linear charge dynamics that result in a large number of programmable weights or non-volatile memory states. Notably, we show that these weights are a function of the timing and frequency of the input spiking signals and can be programmed using a small number of DC voltage bias signals, therefore exhibiting spike-timing and rate dependent plasticity, which are mechanisms to realize learning in neuromorphic circuits.
Collapse
Affiliation(s)
- Ran Cheng
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, United States.,Alabama Micro/Nano Science and Technology Center, Auburn University, Auburn, AL, United States
| | - Uday S Goteti
- Department of Physics, University of California, San Diego, San Diego, CA, United States
| | - Harrison Walker
- Alabama Micro/Nano Science and Technology Center, Auburn University, Auburn, AL, United States.,Department of Materials Engineering, Auburn University, Auburn, AL, United States
| | - Keith M Krause
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, United States.,Alabama Micro/Nano Science and Technology Center, Auburn University, Auburn, AL, United States
| | - Luke Oeding
- Department of Mathematics and Statistics, Auburn University, Auburn, AL, United States
| | - Michael C Hamilton
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, United States.,Alabama Micro/Nano Science and Technology Center, Auburn University, Auburn, AL, United States
| |
Collapse
|
3
|
Xia D, Zhu X, Khanom F, Runt D. Neon and helium focused ion beam etching of resist patterns. NANOTECHNOLOGY 2020; 31:475301. [PMID: 32886649 DOI: 10.1088/1361-6528/abafd6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Helium ion microscopy has attracted many applications in imaging, nanofabrication and analysis. One important field of study in nanofabrication using ion beam is the milling or etching of materials using a helium or neon focused ion beam (FIB), with and without chemical gas assistance. In particular, the neon FIB has a relatively high sputtering rate with a lower probability of swelling and less re-deposition issues compared to a helium FIB. Here, both neon and helium FIB etchings are investigated for milling and repairing electron-beam lithography (EBL) defined hydrogen silsesquioxane (HSQ) and polymethyl methacrylate (PMMA) resist patterns. Different dosages of neon FIB etching result in distinct etching profiles. Using the appropriate doses, arrays of uniform gap with aspect ratio more than 20 can be achieved on HSQ nanostructures. The neon FIB etching has a resolution of 20 nm on HSQ patterns. With XeF2 assistance, neon FIB etching can be enhanced for etching depth by a factor of ∼1.2. Whereas, helium FIB can also etch thick HSQ patterns, with much lower etch rates. But with XeF2 assistance, helium FIB etching depth can be enhanced significantly by a factor of around 5. Furthermore, both helium and neon FIB etching methods have been employed to selectively remove residual particles in deep and narrow trenches without affecting the resist patterns. The chemical analysis of these residual particle composition and resist patterns can be also performed using helium ion microscopy coupled with secondary ion mass spectrometry (SIMS) using neon FIB. Besides, a neon FIB can also effectively etch PMMA patterns which are commonly used in nanofabrication and the unwanted connections can be etched away.
Collapse
Affiliation(s)
- Deying Xia
- Carl Zeiss SMT, Inc, ZEISS Process Control Solutions, One Corporation Way, Peabody, MA 01960, United States of America
| | | | | | | |
Collapse
|
4
|
Grimaldi G, Leo A, Avitabile F, Martucciello N, Galluzzi A, Polichetti M, Pace S, Nigro A. Vortex lattice instability at the nanoscale in a parallel magnetic field. NANOTECHNOLOGY 2019; 30:424001. [PMID: 31315103 DOI: 10.1088/1361-6528/ab3314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In superconducting materials a dynamical rearrangement of the vortex lattice occurs by forcing vortices at high velocities, until the system can become unstable. This phenomenon is known as vortex lattice instability, in which a sudden transition drives the superconducting system abruptly to the normal state. We present an experimental study on submicron bridges of NbN and NbTiN ultra-thin films with a thickness of few nanometers. The nanoscale effect on vortex lattice instability is investigated not only by the ultra-thin thickness in wide bridges, but also by changing the direction of the external magnetic field applied parallel and perpendicular to the c-axis epitaxial films. Indeed, measurements are performed for both orientations and show the vortex lattice instability, regardless of the superconducting material. Critical currents I c as well as instability currents I* have been compared. However, only in the parallel configuration an unusual 'flying birds' feature appears in the magnetic field dependence of current switching, as a consequence of the ratio I*/I c that is approaching 1. This amazing tendency becomes relevant for practical applications involving nanostructures, since by scaling down sample thickness and rotating the external field towards the in-plane orientation, the ultra-thin film geometry can mimic the bridge narrowing down to the nanoscale.
Collapse
|
5
|
Substrate mediated nitridation of niobium into superconducting Nb 2N thin films for phase slip study. Sci Rep 2019; 9:8811. [PMID: 31217545 PMCID: PMC6584497 DOI: 10.1038/s41598-019-45338-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/05/2019] [Indexed: 11/25/2022] Open
Abstract
Here we report a novel nitridation technique for transforming niobium into hexagonal Nb2N which appears to be superconducting below 1K. The nitridation is achieved by high temperature annealing of Nb films grown on Si3N4/Si (100) substrate under high vacuum. The structural characterization directs the formation of a majority Nb2N phase while the morphology shows granular nature of the films. The temperature dependent resistance measurements reveal a wide metal-to-superconductor transition featuring two distinct transition regions. The region close to the normal state varies strongly with the film thickness, whereas, the second region in the vicinity of the superconducting state remains almost unaltered but exhibiting resistive tailing. The current-voltage characteristics also display wide transition embedded with intermediate resistive states originated by phase slip lines. The transition width in current and the number of resistive steps depend on film thickness and they both increase with decrease in thickness. The broadening in transition width is explained by progressive establishment of superconductivity through proximity coupled superconducting nano-grains while finite size effects and quantum fluctuation may lead to the resistive tailing. Finally, by comparing with Nb control samples, we emphasize that Nb2N offers unconventional superconductivity with promises in the field of phase slip based device applications.
Collapse
|