1
|
Nam Y, Chergui M, Young L, Rouxel JR. Linear and Nonlinear X-ray Spectra of Chiral Molecules: X-ray Circular Dichroism, Sum- and Difference-Frequency Generation of Fenchone and Cysteine. J Phys Chem Lett 2025; 16:4652-4661. [PMID: 40323091 DOI: 10.1021/acs.jpclett.5c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Recent advancements in X-ray light sources enable element-sensitive nonlinear spectroscopies for probing molecular chirality. We simulate X-ray absorption spectroscopy, X-ray circular dichroism (XCD), and nonlinear optical/X-ray SFG and DFG (OX SFG/DFG) signals for two prototypical chiral molecules, fenchone and cysteine. Our multireference simulations reproduce experimental data and reveal how novel X-ray spectroscopies exploit the site- and element-sensitivity of X-rays to uncover molecular asymmetry. The XCD spectra show strong asymmetries at chiral centers, while distant atoms contribute weaker signals. The OX SFG/DFG signals, under fixed resonant optical excitation, strongly depend on the core and valence excitations. This allows us to introduce two-dimensional (2D) chirality-sensitive valence-core spectroscopy, which provides insight into the overlap between valence orbitals and local molecular asymmetry. Finally, our estimates using realistic laser and X-ray pulse parameters demonstrate that such nonlinear experiments are feasible at XFELs, offering a promising tool for investigating chiral molecules.
Collapse
Affiliation(s)
- Yeonsig Nam
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Majed Chergui
- Elettra-Sincrotrone Trieste, SS 14 - km 163.5, 34149 Basovizza, Trieste, Italy
- Lausanne Centre for Ultrafast Science (LACUS), Ecole Polytechnique Fédérale de Lausanne (EPFL), ISIC, 1015 Lausanne, Switzerland
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jérémy R Rouxel
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
2
|
Wu F, Gu N, Li J, Cai W, Wu D, Kong Y. A Molecularly Imprinted Chiral Sensor for Colorimetric Resolution of Cysteine Enantiomers Utilizing Oxidase Mimicking of Mn 2O 3 and Reducing Capacity of Cysteine. Anal Chem 2025; 97:8394-8401. [PMID: 40211437 DOI: 10.1021/acs.analchem.4c07102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
A surface molecularly imprinted chiral sensor is designed for colorimetric resolution of cysteine (Cys) enantiomers by utilizing oxidase mimicking of Mn2O3 and reducing capacity of Cys. As the templates, l-Cys is anchored to the Mn2O3 nanozymes through Mn-S bonds, and the resultant Mn2O3-l-Cys is coated by the rigid silicon dioxide (SiO2) imprinting layer. After the l-Cys templates are removed by calcination, molecularly imprinted SiO2@Mn2O3 (MI-SiO2@Mn2O3) is obtained. Owing to the oxidase mimicking of Mn2O3, colorless 3,3',5,5'-tetramethylbenzidine (TMB) can be converted into blue oxidized TMB (oxTMB) by the MI-SiO2@Mn2O3; while the blue colored oxTMB can be reduced to colorless TMB by the reductive Cys. Due to the higher affinity of MI-SiO2@Mn2O3 for l-Cys, more d-Cys is left in the solution after the Cys enantiomers are respectively incubated with the MI-SiO2@Mn2O3, which can make the fading of oxTMB easier. Therefore, colorimetric resolution of the Cys enantiomers can be achieved by the developed molecularly imprinted chiral sensor.
Collapse
Affiliation(s)
- Fan Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ning Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junyao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Liu W, Han H, Wang J. Recent Advances in the 3D Chiral Plasmonic Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305725. [PMID: 37828637 DOI: 10.1002/smll.202305725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/03/2023] [Indexed: 10/14/2023]
Abstract
From the view of geometry, chirality is that an object cannot overlap with its mirror image, which has been a fundamental scientific problem in biology and chemistry since the 19th century. Chiral inorganic nanomaterials serve as ideal templates for investigating chiral transfer and amplification mechanisms between molecule and bulk materials, garnering widespread attentions. The chiroptical property of chiral plasmonic nanomaterials is enhanced through localized surface plasmon resonance effects, which exhibits distinctive circular dichroism (CD) response across a wide wavelength range. Recently, 3D chiral plasmonic nanomaterials are becoming a focal research point due to their unique characteristics and planar-independence. This review provides an overview of recent progresses in 3D chiral plasmonic nanomaterials studies. It begins by discussing the mechanisms of plasmonic enhancement of molecular CD response, following by a detailed presentation of novel classifications of 3D chiral plasmonic nanomaterials. Finally, the applications of 3D chiral nanomaterials such as biology, sensing, chiral catalysis, photology, and other fields have been discussed and prospected. It is hoped that this review will contribute to the flourishing development of 3D chiral nanomaterials.
Collapse
Affiliation(s)
- Wenliang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Han Han
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
4
|
Tan L, Fu W, Gao Q, Wang PP. Chiral Plasmonic Hybrid Nanostructures: A Gateway to Advanced Chiroptical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309033. [PMID: 37944554 DOI: 10.1002/adma.202309033] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Chirality introduces a new dimension of functionality to materials, unlocking new possibilities across various fields. When integrated with plasmonic hybrid nanostructures, this attribute synergizes with plasmonic and other functionalities, resulting in unprecedented chiroptical materials that push the boundaries of the system's capabilities. Recent advancements have illuminated the remarkable chiral light-matter interactions within chiral plasmonic hybrid nanomaterials, allowing for the harnessing of their tunable optical activity and hybrid components. These advancements have led to applications in areas such as chiral sensing, catalysis, and spin optics. Despite these promising developments, there remains a need for a comprehensive synthesis of the current state-of-the-art knowledge, as well as a thorough understanding of the construction techniques and practical applications in this field. This review begins with an exploration of the origins of plasmonic chirality and an overview of the latest advancements in the synthesis of chiral plasmonic hybrid nanostructures. Furthermore, representative emerging categories of hybrid nanomaterials are classified and summarized, elucidating their versatile applications. Finally, the review engages with the fundamental challenges associated with chiral plasmonic hybrid nanostructures and offer insights into the future prospects of this advanced field.
Collapse
Affiliation(s)
- Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qi Gao
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
5
|
Tang T, Shen K, Li J, Liang X, Tang Y, Li C, He Y. Optimal weak measurement scheme for chiral molecular detection based on photonic spin Hall effect. OPTICS EXPRESS 2023; 31:40308-40316. [PMID: 38041335 DOI: 10.1364/oe.500812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/08/2023] [Indexed: 12/03/2023]
Abstract
In this paper, we propose a precision method to measure the chiroptical signal of Artemisinin solutions using the photonic spin Hall effect (PSHE) on the Ce:YIG-YIG-SiO2 structure as a probe. The effects of transmission distance, incident angles, applied magnetic fields of different directions, and beam waist of light on the weak measurement system are analytically investigated through simulations. It is found that decreasing the beam waist of the incident spot, increasing the incident angle, increasing the transmission distance, and adding a longitudinal magnetic field is conducive to enhancing the amplification transverse shift of PSHE, thus the measurement sensitivity is greatly improved. Based on the optimal weak measurement scheme, the detection limit for concentration measurement of artemisinin based on optical rotatory (OR) was reduced to 0.05 mg/ml. The measurement precision of the OR angle has been improved to 10-7rad.
Collapse
|
6
|
Wei P, Li Z, E Y, Jiang Y, Chen P, Li L, Krenzel TF, Qian K. Trace identification of cysteine enantiomers based on an electrochemical sensor assembled from Cu xS@SOD zeolite. Biosens Bioelectron 2023; 239:115631. [PMID: 37639886 DOI: 10.1016/j.bios.2023.115631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
The nonchiral sensor concept based on a sodalite (SOD) zeolite loaded CuxS (CuxS@SOD) catalyst is proposed as a sensing platform for chiral cysteine (Cys) determination. Chiral Cys is analyzed by the difference of binding capacity between CuxS catalysts. The observed current in amperometric i-t curve (A i-t C) is always positive for the L-cysteine (L-Cys), while it is negative for the D-cysteine (D-Cys). Under differential pulse voltammetry (DPV) method, the characteristic current peak for the CuxS@SOD moves to right (positive potential position) with the addition of L-Cys while it moves to left (negative potential direction) with the addition of D-Cys, respectively. Cyclic voltammetry (CV) is consistent with DPV and discusses the diffusion control mechanism. In this work, the ultra-trace determination of cysteine enantiomers reaches the limit of detection (LOD) of 0.70 fM and 0.60 fM by the highly efficient CuxS catalyst restrained in the nanosized SOD zeolite cages of the opening window pores, respectively. The sensor opens up a novel potential prospect for achiral composite in the field of chiral recognition through electrochemical methods with extra-low concentration.
Collapse
Affiliation(s)
- Pengyan Wei
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Zhuozhe Li
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Yifeng E
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Yuying Jiang
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| | - Peng Chen
- Key Laboratory of Functional Inorganic Material Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150080, PR China.
| | - Li Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry in Jilin University, Changchun, 130012, PR China.
| | - Thomas F Krenzel
- Materials Engineering, Faculty Technology and Bionics, Rhine-Waal University of Applied Sciences, Kleve D-47533, Germany.
| | - Kun Qian
- Jinzhou Medical University, Jinzhou, 121001, PR China.
| |
Collapse
|
7
|
Das A, Arefina IA, Danilov DV, Koroleva AV, Zhizhin EV, Parfenov PS, Kuznetsova VA, Ismagilov AO, Litvin AP, Fedorov AV, Ushakova EV, Rogach AL. Chiral carbon dots based on L/D-cysteine produced via room temperature surface modification and one-pot carbonization. NANOSCALE 2021; 13:8058-8066. [PMID: 33956931 DOI: 10.1039/d1nr01693h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Since chirality is one of the phenomena often occurring in nature, optically active chiral compounds are important for applications in the fields of biology, pharmacology, and medicine. With this in mind, chiral carbon dots (CDs), which are eco-friendly and easy-to-obtain light-emissive nanoparticles, offer great potential for sensing, bioimaging, enantioselective synthesis, and development of emitters of circularly polarized light. Herein, chiral CDs have been produced via two synthetic approaches using a chiral amino acid precursor l/d-cysteine: (i) surface modification treatment of achiral CDs at room temperature and (ii) one-pot carbonization in the presence of chiral precursor. The chiral signal in the absorption spectra of synthesized CDs originates not only from the chiral precursor but from the optical transitions attributed to the core and surface states of CDs. The use of chiral amino acid molecules in the CD synthesis through carbonization results in a substantial (up to 8 times) increase in their emission quantum yield. Moreover, the synthesized CDs show two-photon absorption which is an attractive feature for their potential bioimaging and sensing applications.
Collapse
Affiliation(s)
- Ananya Das
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101 Russia.
| | - Irina A Arefina
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101 Russia.
| | - Denis V Danilov
- Saint Petersburg State University, Saint Petersburg, 199034 Russia
| | | | | | - Peter S Parfenov
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101 Russia.
| | - Vera A Kuznetsova
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101 Russia.
| | - Azat O Ismagilov
- Laboratory of Quantum Processes and Measurements, ITMO University, Saint Petersburg, 197101 Russia
| | - Aleksandr P Litvin
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101 Russia. and Laboratory of Quantum Processes and Measurements, ITMO University, Saint Petersburg, 197101 Russia
| | - Anatoly V Fedorov
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101 Russia.
| | - Elena V Ushakova
- Center of Information Optical Technologies, ITMO University, Saint Petersburg, 197101 Russia.
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, Kowloon, Hong Kong SAR, P. R. China and Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
| |
Collapse
|
8
|
Cao Z, Gao H, Qiu M, Jin W, Deng S, Wong KY, Lei D. Chirality Transfer from Sub-Nanometer Biochemical Molecules to Sub-Micrometer Plasmonic Metastructures: Physiochemical Mechanisms, Biosensing, and Bioimaging Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907151. [PMID: 33252162 DOI: 10.1002/adma.201907151] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/21/2020] [Indexed: 05/05/2023]
Abstract
Determining the structural chirality of biomolecules is of vital importance in bioscience and biomedicine. Conventional methods for characterizing molecular chirality, e.g., circular dichroism (CD) spectroscopy, require high-concentration specimens due to the weak electronic CD signals of biomolecules such as amino acids. Artificially designed chiral plasmonic metastructures exhibit strong intrinsic chirality. However, the significant size mismatch between metastructures and biomolecules makes the former unsuitable for chirality-recognition-based molecular discrimination. Fortunately, constructing metallic architectures through molecular self-assembly allows chirality transfer from sub-nanometer biomolecules to sub-micrometer, intrinsically achiral plasmonic metastructures by means of either near-field interaction or chirality inheritance, resulting in hybrid systems with CD signals orders of magnitude larger than that of pristine biomolecules. This exotic property provides a new means to determine molecular chirality at extremely low concentrations (ideally at the single-molecule level). Herein, three strategies of chirality transfer from sub-nanometer biomolecules to sub-micrometer metallic metastructures are analyzed. The physiochemical mechanisms responsible for chirality transfer are elaborated and new fascinating opportunities for employing plasmonic metastructures in chirality-based biosensing and bioimaging are outlined.
Collapse
Affiliation(s)
- Zhaolong Cao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Han Gao
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Meng Qiu
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Wei Jin
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Kwok-Yin Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
9
|
Wang J, Xu X, Chen H, Zhang SS, Peng YX. Oxidation of Sodium Deoxycholate Catalyzed by Gold Nanoparticles and Chiral Recognition Performances of Bile Salt Micelles. Molecules 2019; 24:E4508. [PMID: 31835427 PMCID: PMC6943626 DOI: 10.3390/molecules24244508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 11/28/2022] Open
Abstract
Au nanoparticles (NPs) were prepared by UV light irradiation of a mixed solution of HAuCl4 and sodium deoxycholate (NaDC) under alkaline condition, in which NaDC served as both reducing agent and capping agent. The reaction was monitored by circular dichroism (CD) spectra, and it was found that the formed gold NPs could catalyze the oxidation of NaDC. A CD signal at ~283 nm in the UV region was observed for the oxidation product of NaDC. The intensity of the CD signal of the oxidation product was enhanced gradually with the reaction time. Electrospray ionization (ESI) mass spectra and nuclear magnetic resonance (NMR) spectra were carried out to determine the chemical composition of the oxidation product, revealing that NaDC was selectively oxidized to sodium 3-keto-12-hydroxy-cholanate (3-KHC). The chiral discrimination abilities of the micelles of NaDC and its oxidation product, 3-KHC, were investigated by using chiral model molecules R,S-1,1'-Binaphthyl-2,2'-diyl hydrogenphosphate (R,S-BNDHP). Compared with NaDC, the micelles of 3-KHC displayed higher binding ability to the chiral model molecules. In addition, the difference in binding affinity of 3-KHC micelles towards R,S-isomer was observed, and S-isomer was shown to preferentially bind to the micelles.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (X.X.); (H.C.); (S.-S.Z.)
| | | | | | | | - Yin-Xian Peng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (X.X.); (H.C.); (S.-S.Z.)
| |
Collapse
|
10
|
Wang J, Xu X, Qiu X, Zhang S, Peng Y. Yolk–shell structured Au@Ag@mSiO2 as a probe for sensing cysteine enantiomers and Cu2+ based on circular dichroism. Analyst 2019; 144:7489-7497. [DOI: 10.1039/c9an01541h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel yolk–shell structured Au@Ag@mSiO2 was fabricated and used as a probe for recognition and quantification of cysteine enantiomers and Cu2+.
Collapse
Affiliation(s)
- Jing Wang
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Xu Xu
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Xiaolin Qiu
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Shuaishuai Zhang
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| | - Yinxian Peng
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang 212003
- China
| |
Collapse
|