1
|
Zapata K, Vélez AD, Correa JA, Carrasco-Marín F, Rojano BA, Franco CA, Cortés FB. Bioactive Properties and In Vitro Digestive Release of Cannabidiol (CBD) from Tailored Composites Based on Carbon Materials. Pharmaceutics 2024; 16:1132. [PMID: 39339170 PMCID: PMC11435132 DOI: 10.3390/pharmaceutics16091132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The use of carriers to improve cannabidiol (CBD) bioavailability during digestion is at the forefront of research. The main objective of this research was to evaluate CBD bioactivity and develop CBD composites based on tailored carbon support to improve availability under digestive conditions. The antioxidant capacity of CBD was evaluated using spectrophotometric methods, and anti-proliferative assays were carried out using human colon carcinoma cells (SW480). Twenty-four composites of CBD + carbon supports were developed, and CBD desorption tests were carried out under simulated digestive conditions. The antioxidant capacity of CBD was comparable to and superior to Butylhydrox-ytoluene (BHT), a commercial antioxidant. CBD reflected an IC-50 of 10,000 mg/L against SW480 cancer cells. CBD in biological systems can increase the shelf life of lipid and protein foods by 7 and 470 days, respectively. Finally, acid carbons showed major CBD adsorption related to electrostatic interactions, but basic carbons showed better delivery properties related to electrostatic repulsion. A tailored composite was achieved with a CBD load of 27 mg/g with the capacity to deliver 1.1 mg, 21.8 mg, and 4 mg to the mouth, stomach, and duodenum during 18 h, respectively. This is a pioneering study since the carriers were intelligently developed to improve CBD release.
Collapse
Affiliation(s)
- Karol Zapata
- Bionatural Cosmeticos SAS, Medellín 050030, Colombia;
- Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050036, Colombia; (C.A.F.); (F.B.C.)
| | - Angie D. Vélez
- Química de los Productos Naturales y los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (A.D.V.); (B.A.R.)
| | | | - Francisco Carrasco-Marín
- Polyfunctional Carbon-Based Materials, UGR-Carbon, Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Avda. de Fuente Nueva, s/n, ES18071 Granada, Spain;
| | - Benjamín A. Rojano
- Química de los Productos Naturales y los Alimentos, Facultad de Ciencias, Universidad Nacional de Colombia—Sede Medellín, Medellín 050034, Colombia; (A.D.V.); (B.A.R.)
| | - Camilo A. Franco
- Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050036, Colombia; (C.A.F.); (F.B.C.)
| | - Farid B. Cortés
- Fenómenos de Superficie—Michael Polanyi, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellín, Medellín 050036, Colombia; (C.A.F.); (F.B.C.)
| |
Collapse
|
2
|
Vohra M, Hussaini M, Mohammad T. Olive branches activated carbon: synthesis, phenol adsorption and modeling. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Almutairi M. Evaluate the effectiveness technology for the treatment of oily wastewater. JOURNAL OF WATER AND HEALTH 2022; 20:1171-1187. [PMID: 36044187 DOI: 10.2166/wh.2022.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This work deals with the treatment of oily wastewater produced from the washing of oil-contaminated soil. Untreated oily wastewater contains toxic compounds that might be mutagenic or carcinogenic as total petroleum hydrocarbon (TPH) and heavy metals. Based on the water quality analysis, the tested samples contained a high concentration of TPH, chemical oxygen demand (COD) and turbidity with an average value of 67,500 mg/l, 48,240 mg/l and 176 (nephelometric turbidity unit, NTU), respectively. Several technologies were used, such as centrifuging, powdered activated carbon (PAC) and sawdust. The mean values of COD values for sawdust, centrifuging and PAC were 41,067, 25,600 and 13,133 mg/l, respectively. The present study indicated that the coagulation/flocculation processes were more efficient by using aluminium sulphate alum, while the preliminary conclusion derived was that the secondary treatment using an aeration system is capable of lowering the COD values as well as increasing the flocculent mass floc well equal to 4,784 mg/l and 0.69 g, respectively. The microbial seed was able to degrade the biosurfactant, which allows the stability of oil emulsion to be broken down and released easily.
Collapse
Affiliation(s)
- Meshari Almutairi
- Civil Engineering Department, Australian University AU: Kuwait, KW, West Mishref Mubarak Al-Abdullah Al-Jaber Area Block 5 - Al Aqsa Mosque Street Gate 1, P.O. Box 1411, Safat 13015, Kuwait E-mail:
| |
Collapse
|
4
|
Oily Wastewater Treatment: Overview of Conventional and Modern Methods, Challenges, and Future Opportunities. WATER 2021. [DOI: 10.3390/w13070980] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Industrial developments in the oil and gas, petrochemical, pharmaceutical and food sector have contributed to the large production of oily wastewater worldwide. Oily wastewater pollution affects drinking water and groundwater resources, endangers aquatic life and human health, causes atmospheric pollution, and affects crop production. Several traditional and conventional methods were widely reported, and the advantages and limitations were discussed. However, with the technology innovation, new trends of coupling between techniques, use of new materials, optimization of the cleaning process, and multiphysical approach present new paths for improvement. Despite these trends of improvement and the encouraging laboratory results of modern and green methods, many challenges remain to be raised, particularly the commercialization and the global aspect of these solutions and the reliability to reduce the system’s maintenance and operational cost. In this review, the well-known oily wastewater cleaning methods and approaches are being highlighted, and the obstacles faced in the practical use of these technologies are discussed. A critical review on the technologies and future direction as the road to commercialization is also presented to persevere water resources for the benefit of mankind and all living things.
Collapse
|
5
|
Nano-Intermediate of Magnetite Nanoparticles Supported on Activated Carbon from Spent Coffee Grounds for Treatment of Wastewater from Oil Industry and Energy Production. Processes (Basel) 2020. [DOI: 10.3390/pr9010063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This work focused on evaluating the adsorptive removal of crude oil using a nano-intermediate based on magnetite nanoparticles supported on activated carbon synthesized from spent coffee grounds and the subsequent catalytic oil decomposition to recover by-products and regenerate the support material. The magnetite nanoparticles were synthesized by the co-precipitation method and were used as active phases on prepared activated carbon. The amount of crude oil adsorbed was determined by adsorption isotherms. In addition, dynamic tests were performed on a packed bed to evaluate the efficiency of the removal process. Thermogravimetric analysis and mass spectrometry were used to evaluate the catalytic powder and the quantification of by-products. Contrasting the results with commercial carbon, the one synthesized from the coffee residue showed a greater affinity for the oil. Likewise, the adsorption capacity increased by doping activated carbon with magnetite nanoparticles, obtaining an efficiency greater than 10%. The crude oil decomposition was carried out successfully by thermal cracking, obtaining a 100% removal. The gas produced after decomposition contains light hydrocarbons such as C2H4 and CH4 and shows a decrease in polluting species such as CO and CO2, leading to greater environmental sustainability of the process.
Collapse
|
6
|
Fu X, Wang H, Bai Y, Xue J, Gao Y, Hu S, Wu T, Sun J. Systematic degradation mechanism and pathways analysis of the immobilized bacteria: Permeability and biodegradation, kinetic and molecular simulation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 2:100028. [PMID: 36160920 PMCID: PMC9488012 DOI: 10.1016/j.ese.2020.100028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 05/07/2023]
Abstract
In order to effectively improve the degradation rate of diesel, a systematic analysis of the degradation mechanism used by immobilized bacteria is necessary. In the present study, diesel degradation mechanisms were assessed by analyzing permeability, biodegradation, adsorption kinetics, and molecular simulation. We found that bacteria immobilized on cinnamon shells and peanut shells degraded relatively high amounts of diesel (69.94% and 64.41%, respectively). The primary degradation pathways used by immobilized bacteria included surface adsorption, internal uptake, and biodegradation. Surface adsorption was dominant in the early stage of degradation, whereas biodegradation was dominant in later stages. The diesel adsorption rate of the immobilized bacteria was in agreement with the pseudo second-order kinetic model. The immobilized bacteria and diesel interacted through hydrogen bonds.
Collapse
Affiliation(s)
- Xinge Fu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta (Binzhou University), Binzhou, 256600, China
| | - Huajun Wang
- College of Chemical Engineering and Environment, China University of Petroleum, Changping, Beijing, 102249, China
| | - Yu Bai
- China Unicom System Integration Co., Ltd, No.131, Xidan North Road, Beijing, 100085, China
| | - Jianliang Xue
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta (Binzhou University), Binzhou, 256600, China
- Corresponding author. College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Yu Gao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Shugang Hu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Tongtong Wu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Jingkuan Sun
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta (Binzhou University), Binzhou, 256600, China
| |
Collapse
|
7
|
Liquid–Liquid Continuous Extraction and Fractional Distillation for the Removal of Organic Compounds from the Wastewater of the Oil Industry. WATER 2019. [DOI: 10.3390/w11071452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This is the first study to carry out a laboratory-scale assay to assess the potentiality of continuous liquid–liquid extraction with dichloromethane (CLLEDCM) and high-power fractional distillation (HPFD) as a treatment to decontaminate the wastewater generated by the petroleum industry (WW). The analytical parameters of treated wastewater (TWW) evidenced a remarkable quality improvement compared to the original WW. CLLEDCM–HPFD yielded 92.4%–98.5% of the WW mass as more environmentally friendly water. Compared to the original values determined in the WW, total petroleum hydrocarbon (TPH) decreased by 95.0%–100.0%, and the chemical oxygen demand (COD) decreased by 90.5%–99.9%. Taking into account the yield of the treated water, the amount of pollutant removed, and the risks of each process, the order of the potentiality of these treatments, from highest to lowest, was HPFD > CLLEDCM–HPFD > CLLEDCM. CLLEDCM treatment alone produced TWW with poorer quality, and the CLLEDCM–HPFD sequence involved the greatest consumption of time and energy (0.390–0.905 kWh/kg). CLLEDCM-only was the least effective treatment because the TWW obtained failed to comply with the regulations of oil-producing countries.
Collapse
|