1
|
Tonu NT, Ahamed P, Yousuf MA. Bloom gelatin template based Mn3O4 nanoparticles synthesis for electrochemical application in aqueous rechargeable zinc ion battery. IONICS 2024; 30:4689-4703. [DOI: 10.1007/s11581-024-05636-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 04/24/2025]
|
2
|
Silina EV, Ivanova OS, Manturova NE, Medvedeva OA, Shevchenko AV, Vorsina ES, Achar RR, Parfenov VA, Stupin VA. Antimicrobial Activity of Citrate-Coated Cerium Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:354. [PMID: 38392727 PMCID: PMC10893433 DOI: 10.3390/nano14040354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
The purpose of this study was to investigate the antimicrobial activity of citrate-stabilized sols of cerium oxide nanoparticles at different concentrations via different microbiological methods and to compare the effect with the peroxidase activity of nanoceria for the subsequent development of a regeneration-stimulating medical and/or veterinary wound-healing product providing new types of antimicrobial action. The object of this study was cerium oxide nanoparticles synthesized from aqueous solutions of cerium (III) nitrate hexahydrate and citric acid (the size of the nanoparticles was 3-5 nm, and their aggregates were 60-130 nm). Nanoceria oxide sols with a wide range of concentrations (10-1-10-6 M) as well as powder (the dry substance) were used. Both bacterial and fungal strains (Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Proteus vulgaris, Candida albicans, Aspergillus brasielensis) were used for the microbiological studies. The antimicrobial activity of nanoceria was investigated across a wide range of concentrations using three methods sequentially; the antimicrobial activity was studied by examining diffusion into agar, the serial dilution method was used to detect the minimum inhibitory and bactericidal concentrations, and, finally, gas chromatography with mass-selective detection was performed to study the inhibition of E. coli's growth. To study the redox activity of different concentrations of nanocerium, we studied the intensity of chemiluminescence in the oxidation reaction of luminol in the presence of hydrogen peroxide. As a result of this study's use of the agar diffusion and serial dilution methods followed by sowing, no significant evidence of antimicrobial activity was found. At the same time, in the current study of antimicrobial activity against E. coli strains using gas chromatography with mass spectrometry, the ability of nanoceria to significantly inhibit the growth and reproduction of microorganisms after 24 h and, in particular, after 48 h of incubation at a wide range of concentrations, 10-2-10-5 M (48-95% reduction in the number of microbes with a significant dose-dependent effect) was determined as the optimum concentration. A reliable redox activity of nanoceria coated with citrate was established, increasing in proportion to the concentration, confirming the oxidative mechanism of the action of nanoceria. Thus, nanoceria have a dose-dependent bacteriostatic effect, which is most pronounced at concentrations of 10-2-10-3 M. Unlike the effects of classical antiseptics, the effect was manifested from 2 days and increased during the observation. To study the antimicrobial activity of nanomaterials, it is advisable not to use classical qualitative and semi-quantitative methods; rather, the employment of more accurate quantitative methods is advised, in particular, gas chromatography-mass spectrometry, during several days of incubation.
Collapse
Affiliation(s)
- Ekaterina Vladimirovna Silina
- Department of Pathological Physiology, Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Olga Sergeevna Ivanova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninskiy Pr., 31, Bldg. 4, 119071 Moscow, Russia;
| | - Natalia Evgenevna Manturova
- Department of Plastic and Reconstructive Surgery, Cosmetology and Cell Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Olga Anatolyevna Medvedeva
- Department of Microbiology, Virology, Immunology, Kursk State Medical University, Karl Marx St, 3, 305041 Kursk, Russia; (O.A.M.); (A.V.S.); (E.S.V.)
| | - Alina Vladimirovna Shevchenko
- Department of Microbiology, Virology, Immunology, Kursk State Medical University, Karl Marx St, 3, 305041 Kursk, Russia; (O.A.M.); (A.V.S.); (E.S.V.)
| | - Ekaterina Sergeevna Vorsina
- Department of Microbiology, Virology, Immunology, Kursk State Medical University, Karl Marx St, 3, 305041 Kursk, Russia; (O.A.M.); (A.V.S.); (E.S.V.)
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, Mysuru, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India;
| | - Vladimir Anatolevich Parfenov
- Department of Pathological Physiology, Sklifosovsky Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Victor Aleksandrovich Stupin
- Department of Hospital Surgery No.1, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| |
Collapse
|
3
|
Wang L, Xu X, Chu L, Meng C, Xu L, Wang Y, Jiao Q, Huang T, Zhao Y, Liu X, Li J, Zhou B, Wang T. PEG-modified carbon-based nanoparticles as tumor-targeted drug delivery system reducing doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2023; 168:115836. [PMID: 37925938 DOI: 10.1016/j.biopha.2023.115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023] Open
Abstract
Herein, a doxorubicin-loaded carbon-based drug delivery system, denoted as PC-DOX, composed of pH-responsive imine bond was developed for the tumor-targeted treatment. PC-DOX with a uniform particle size around 180 nm was synthesized by coating of as-synthesized hollow carbon-based nanoparticles (NPs) with dialdehyde PEG, which was used as carrier to attach DOX covalently through dynamic covalent bond. The unique structure endowed the advantages of specific tumor targeting and tumor microenvironment (TME) specific drug delivery capacity with PC-DOX. For the one hand, the tumor targeting caused by the enhanced permeability and retention (EPR) effect could significantly improve the tumor cellular uptake. For the other hand, the pH-responsiveness could realize the effective DOX accumulation in tumor tissues, avoiding the unwanted side effect to the normal tissues. As a result, PC-DOX with high DOX loading capacity (70.12%) and excellent biocompatibility, concurrently, presented a significant anti-tumor effect at a low mass concentration (DOX equivalent dose: 20 μg/mL). Another attractive characteristic of PC-DOX was the remarkable protective effect towards DOX-induced cardiotoxicity, which could be clearly observed from in vitro cellular, and animal assays. Compared with free DOX, the cardiomyocyte viability increased by average 30.58%, and the heart function was also significantly improved. This novel drug delivery nanoplatform provides a new method for the future clinical application of DOX in the cancer's therapeutics.
Collapse
Affiliation(s)
- Lide Wang
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China; School of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Xiufeng Xu
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Lichao Chu
- The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261044, Shandong, PR China; School of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Chun Meng
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Longwu Xu
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China; School of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Yuying Wang
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China; School of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Qiuhong Jiao
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Tao Huang
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Yudan Zhao
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Xiaohong Liu
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Jingtian Li
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong, PR China.
| | - Tao Wang
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China.
| |
Collapse
|
4
|
Alhalili Z. Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment. Molecules 2023; 28:3086. [PMID: 37049850 PMCID: PMC10096196 DOI: 10.3390/molecules28073086] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Nanotechnology (NT) is now firmly established in both the private home and commercial markets. Due to its unique properties, NT has been fully applied within multiple sectors like pharmacy and medicine, as well as industries like chemical, electrical, food manufacturing, and military, besides other economic sectors. With the growing demand for environmental resources from an ever-growing world population, NT application is a very advanced new area in the environmental sector and offers several advantages. A novel template synthesis approach is being used for the promising metal oxide nanostructures preparation. Synthesis of template-assisted nanomaterials promotes a greener and more promising protocol compared to traditional synthesis methods such as sol-gel and hydrothermal synthesis, and endows products with desirable properties and applications. It provides a comprehensive general view of current developments in the areas of drinking water treatment, wastewater treatment, agriculture, and remediation. In the field of wastewater treatment, we focus on the adsorption of heavy metals and persistent substances and the improved photocatalytic decomposition of the most common wastewater pollutants. The drinking water treatment section covers enhanced pathogen disinfection and heavy metal removal, point-of-use treatment, and organic removal applications, including the latest advances in pesticide removal.
Collapse
Affiliation(s)
- Zahrah Alhalili
- Department of Chemistry, College of Science and Arts-Sajir, Shaqra University, Sahqra 17684, Saudi Arabia
| |
Collapse
|
5
|
Das A, Peu SD, Hossain MS, Akanda MAM, Salah MM, Akanda MMH, Rahman M, Das BK. Metal Oxide Nanosheet: Synthesis Approaches and Applications in Energy Storage Devices (Batteries, Fuel Cells, and Supercapacitors). NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1066. [PMID: 36985960 PMCID: PMC10057665 DOI: 10.3390/nano13061066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
In recent years, the increasing energy requirement and consumption necessitates further improvement in energy storage technologies to obtain high cycling stability, power and energy density, and specific capacitance. Two-dimensional metal oxide nanosheets have gained much interest due to their attractive features, such as composition, tunable structure, and large surface area which make them potential materials for energy storage applications. This review focuses on the establishment of synthesis approaches of metal oxide nanosheets (MO nanosheets) and their advancements over time, as well as their applicability in several electrochemical energy storage systems, such as fuel cells, batteries, and supercapacitors. This review provides a comprehensive comparison of different synthesis approaches of MO nanosheets, as well their suitability in several energy storage applications. Among recent improvements in energy storage systems, micro-supercapacitors, and several hybrid storage systems are rapidly emerging. MO nanosheets can be employed as electrode and catalyst material to improve the performance parameters of energy storage devices. Finally, this review outlines and discusses the prospects, future challenges, and further direction for research and applications of metal oxide nanosheets.
Collapse
Affiliation(s)
- Arnob Das
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
| | - Susmita Datta Peu
- Department of Agriculture, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Md. Sanowar Hossain
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
| | - Md Abdul Mannan Akanda
- School of Engineering and Technology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Mostafa M. Salah
- Electrical Engineering Department, Future University in Egypt, Cairo 11835, Egypt
| | | | - Mahbubur Rahman
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Barun K. Das
- Department of Mechanical Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
| |
Collapse
|
6
|
TiC-Supported ruthenium nanoparticles as an efficient electrocatalyst for the hydrogen evolution reaction. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
7
|
NiS/Cu7S4 composites as high-performance supercapacitor electrodes. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
8
|
Ultrasensitive detection of Hg(II) by small-sized Mn3O4 loaded on g-C3N4 nanosheets: Heterojunction facilitates electron transfer and Mn(II)/Mn(III)/Mn(IV) cycle. Anal Chim Acta 2022; 1230:340404. [DOI: 10.1016/j.aca.2022.340404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022]
|
9
|
Du X, Liu L, Xie Z, Yu D, Han L, Zhang Y, Cui Z, Xue Y, Zhao X, Liu X. Microwave‐Assisted Rapid Synthesis of Urchin‐Like Bimetallic Mn–Co Carbonate Composites for High‐Performance Supercapacitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xiaomin Du
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University 2699 Qian Jin Street Changchun 130012 China
| | - Liangyu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University 2699 Qian Jin Street Changchun 130012 China
| | - Zhengjie Xie
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University 2699 Qian Jin Street Changchun 130012 China
| | - Deyang Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University 2699 Qian Jin Street Changchun 130012 China
| | - Leiyun Han
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University 2699 Qian Jin Street Changchun 130012 China
| | - Yuwan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University 2699 Qian Jin Street Changchun 130012 China
| | - Zheng Cui
- State Key Laboratory of Superhard Materials College of Physics Jilin University 2699 Qian Jin Street Changchun 130012 China
| | - Ying Xue
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University 2699 Qian Jin Street Changchun 130012 China
| | - Xudong Zhao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University 2699 Qian Jin Street Changchun 130012 China
| | - Xiaoyang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University 2699 Qian Jin Street Changchun 130012 China
| |
Collapse
|
10
|
Ochirkhuyag A, Sápi A, Szamosvölgyi Á, Kozma G, Kukovecz Á, Kónya Z. One-pot mechanochemical ball milling synthesis of the MnO x nanostructures as efficient catalysts for CO 2 hydrogenation reactions. Phys Chem Chem Phys 2020; 22:13999-14012. [PMID: 32555892 DOI: 10.1039/d0cp01855d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we report on a one-pot mechanochemical ball milling synthesis of manganese oxide nanostructures synthesized at different milling speeds. The as-synthesized pure oxides and metal (Pt and Cu) doped oxides were tested in the hydrogenation of CO2 in the gas phase. Our study demonstrates the successful synthesis of the manganese oxide nanoparticles via mechano-chemical synthesis. We discovered that the milling speed could tune the crystal structure and the oxidation state of the manganese, which plays an essential role in the CO2 hydrogenation evidenced by ex situ XRD and XPS studies. The pure MnOx milled at 600 rpm showed high catalytic activity (∼20 000 nmol g-1 s-1) at 823 K, which can be attributed to the presence of Mn(ii) besides Mn(iii) and Mn(iv) on the surface under the reaction conditions. This study illustrates that the milling method is a cost-effective, simple way for the production of both pure, Pt-doped and Cu-loaded manganese nanocatalysts for heterogeneous catalytic reactions. Thus, we studied the Pt incorporation effect for the catalytic activity of MnOx using different Pt loading methods such as one-pot milling, wet impregnation and size-controlled 5 nm Pt loading via an ultrasonication-assisted method.
Collapse
Affiliation(s)
- Altantuya Ochirkhuyag
- University of Szeged, Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, H-6720, Rerrich Béla tér 1, Szeged, Hungary.
| | - András Sápi
- University of Szeged, Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, H-6720, Rerrich Béla tér 1, Szeged, Hungary. and Institute of Environmental and Technological Sciences, University of Szeged, H-6720, Szeged, Hungary
| | - Ákos Szamosvölgyi
- University of Szeged, Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, H-6720, Rerrich Béla tér 1, Szeged, Hungary.
| | - Gábor Kozma
- University of Szeged, Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, H-6720, Rerrich Béla tér 1, Szeged, Hungary.
| | - Ákos Kukovecz
- University of Szeged, Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, H-6720, Rerrich Béla tér 1, Szeged, Hungary. and MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, H-6720 Szeged, Rerrich Béla tér 1, Szeged, Hungary
| | - Zoltán Kónya
- University of Szeged, Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, H-6720, Rerrich Béla tér 1, Szeged, Hungary. and MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, University of Szeged, H-6720 Szeged, Rerrich Béla tér 1, Szeged, Hungary
| |
Collapse
|
11
|
Achieving Ultrahigh Cycling Stability and Extended Potential Window for Supercapacitors through Asymmetric Combination of Conductive Polymer Nanocomposite and Activated Carbon. Polymers (Basel) 2019; 11:polym11101678. [PMID: 31615090 PMCID: PMC6835797 DOI: 10.3390/polym11101678] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022] Open
Abstract
Conducting polymers and carbon-based materials such as graphene oxide (GO) and activated carbon (AC) are the most promising capacitive materials, though both offer charge storage through different mechanisms. However, their combination can lead to some unusual results, offering improvement in certain properties in comparison with the individual materials. Cycling stability of supercapacitors devices is often a matter of concern, and extensive research is underway to improve this phenomena of supercapacitive devices. Herein, a high-performance asymmetric supercapacitor device was fabricated using graphene oxide–polyaniline (GO@PANI) nanocomposite as positive electrode and activated carbon (AC) as negative electrode. The device showed 142 F g−1 specific capacitance at 1 A g−1 current density with capacitance retention of 73.94% at higher current density (10 A g−1). Most importantly, the device exhibited very high electrochemical cycling stability. It retained 118.6% specific capacitance of the starting value after 10,000 cycles at 3 Ag−1 and with coulombic efficiency of 98.06 %, indicating great potential for practical applications. Very small solution resistance (Rs, 0.640 Ω) and charge transfer resistance (Rct, 0.200 Ω) were observed hinting efficient charge transfer and fast ion diffusion. Due to asymmetric combination, potential window was extended to 1.2 V in aqueous electrolyte, as a result higher energy density (28.5 Wh kg−1) and power density of 2503 W kg−1 were achieved at the current density 1 Ag−1. It also showed an aerial capacitance of 57 mF cm−2 at current 3.2 mA cm−2. At this current density, its energy density was maximum (0.92 mWh cm−2) with power density (10.47 W cm−2).
Collapse
|