1
|
Krissanaprasit A, Mihalko E, Meinhold K, Simpson A, Sollinger J, Pandit S, Dupont DM, Kjems J, Brown AC, LaBean TH. A functional RNA-origami as direct thrombin inhibitor with fast-acting and specific single-molecule reversal agents in vivo model. Mol Ther 2024; 32:2286-2298. [PMID: 38720458 PMCID: PMC11286819 DOI: 10.1016/j.ymthe.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/29/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Abstract
Injectable anticoagulants are widely used in medical procedures to prevent unwanted blood clotting. However, many lack safe, effective reversal agents. Here, we present new data on a previously described RNA origami-based, direct thrombin inhibitor (HEX01). We describe a new, fast-acting, specific, single-molecule reversal agent (antidote) and present in vivo data for the first time, including efficacy, reversibility, preliminary safety, and initial biodistribution studies. HEX01 contains multiple thrombin-binding aptamers appended on an RNA origami. It exhibits excellent anticoagulation activity in vitro and in vivo. The new single-molecule, DNA antidote (HEX02) reverses anticoagulation activity of HEX01 in human plasma within 30 s in vitro and functions effectively in a murine liver laceration model. Biodistribution studies of HEX01 in whole mice using ex vivo imaging show accumulation mainly in the liver over 24 h and with 10-fold lower concentrations in the kidneys. Additionally, we show that the HEX01/HEX02 system is non-cytotoxic to epithelial cell lines and non-hemolytic in vitro. Furthermore, we found no serum cytokine response to HEX01/HEX02 in a murine model. HEX01 and HEX02 represent a safe and effective coagulation control system with a fast-acting, specific reversal agent showing promise for potential drug development.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695, USA.
| | - Emily Mihalko
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC 27695, USA
| | - Katherine Meinhold
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Aryssa Simpson
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC 27695, USA
| | - Jennifer Sollinger
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC 27695, USA
| | - Sanika Pandit
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC 27695, USA
| | - Daniel M Dupont
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000 Aarhus, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, 8000 Aarhus, Denmark
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, College of Engineering, North Carolina State University and University of North Carolina-Chapel Hill, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University and University of North Carolina, Chapel Hill, NC 27695, USA
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, NC 27695, USA; Comparative Medicine Institute, North Carolina State University and University of North Carolina, Chapel Hill, NC 27695, USA.
| |
Collapse
|
2
|
De Franceschi N, Hoogenberg B, Katan A, Dekker C. Engineering ssRNA tile filaments for (dis)assembly and membrane binding. NANOSCALE 2024; 16:4890-4899. [PMID: 38323489 DOI: 10.1039/d3nr06423a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Cytoskeletal protein filaments such as actin and microtubules confer mechanical support to cells and facilitate many cellular functions such as motility and division. Recent years have witnessed the development of a variety of molecular scaffolds that mimic such filaments. Indeed, filaments that are programmable and compatible with biological systems may prove useful in studying or substituting such proteins. Here, we explore the use of ssRNA tiles to build and modify filaments in vitro. We engineer a number of functionalities that are crucial to the function of natural proteins filaments into the ssRNA tiles, including the abilities to assemble or disassemble filaments, to tune the filament stiffness, to induce membrane binding, and to bind proteins. This work paves the way for building dynamic cytoskeleton-mimicking systems made out of rationally designed ssRNA tiles that can be transcribed in natural or synthetic cells.
Collapse
Affiliation(s)
- Nicola De Franceschi
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands.
| | - Baukje Hoogenberg
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands.
| | - Allard Katan
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands.
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
3
|
Fischermeier D, Steinmetzger C, Höbartner C, Mitrić R. Conformational preferences of modified nucleobases in RNA aptamers and their effect on Förster resonant energy transfer. Phys Chem Chem Phys 2023; 26:241-248. [PMID: 38054366 DOI: 10.1039/d3cp04704k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Förster resonant energy transfer (FRET) can be utilized in the study of tertiary structures of RNA aptamers, which bind specific fluorophoric ligands to form a fluorogenic aptamer complex. By introducing the emissive nucleobase analog 4-cyanoindole into the fluorogenic Chili RNA aptamer a FRET pair was established. The interpretation of studies aiming to investigate those tertiary structures using FRET, however, relies on prior knowledge about conformational properties of the nucleobase, which govern exciton transfer capabilities. Herein we employed classical molecular dynamics combined with Förster exciton theory to elucidate the preferred orientation relative to proximate bases and the influence on exciton transfer efficiency in multiple substitution sites. We did this by comparing the chromophoric distances emergent from MD simulations with experimental FRET data based on structural data of the native aptamer. We present the outlined methodology as a means to reliably evaluate future nucleobase analogue candidates in terms of their structural behavior and emergent exciton transfer properties as exemplified in the study of the preferred orientation of 4-cyanoindole in the Chili RNA aptamer.
Collapse
Affiliation(s)
- David Fischermeier
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Christian Steinmetzger
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Claudia Höbartner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Roland Mitrić
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
4
|
Torelli E, Shirt-Ediss B, Navarro SA, Manzano M, Vizzini P, Krasnogor N. Light-Up Split Broccoli Aptamer as a Versatile Tool for RNA Assembly Monitoring in Cell-Free TX-TL Systems, Hybrid RNA/DNA Origami Tagging and DNA Biosensing. Int J Mol Sci 2023; 24:ijms24108483. [PMID: 37239830 DOI: 10.3390/ijms24108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Binary light-up aptamers are intriguing and emerging tools with potential in different fields. Herein, we demonstrate the versatility of a split Broccoli aptamer system able to turn on the fluorescence signal only in the presence of a complementary sequence. First, an RNA three-way junction harbouring the split system is assembled in an E. coli-based cell-free TX-TL system where the folding of the functional aptamer is demonstrated. Then, the same strategy is introduced into a 'bio-orthogonal' hybrid RNA/DNA rectangle origami characterized by atomic force microscopy: the activation of the split system through the origami self-assembly is demonstrated. Finally, our system is successfully used to detect the femtomoles of a Campylobacter spp. DNA target sequence. Potential applications of our system include the real-time monitoring of the self-assembly of nucleic-acid-based devices in vivo and of the intracellular delivery of therapeutic nanostructures, as well as the in vitro and in vivo detection of different DNA/RNA targets.
Collapse
Affiliation(s)
- Emanuela Torelli
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Ben Shirt-Ediss
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Silvia A Navarro
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Marisa Manzano
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, 33100 Udine, Italy
| | - Priya Vizzini
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, 33100 Udine, Italy
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
5
|
Zhu G, Song P, Wu J, Luo M, Chen Z, Chen T. Application of Nucleic Acid Frameworks in the Construction of Nanostructures and Cascade Biocatalysts: Recent Progress and Perspective. Front Bioeng Biotechnol 2022; 9:792489. [PMID: 35071205 PMCID: PMC8777461 DOI: 10.3389/fbioe.2021.792489] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids underlie the storage and retrieval of genetic information literally in all living organisms, and also provide us excellent materials for making artificial nanostructures and scaffolds for constructing multi-enzyme systems with outstanding performance in catalyzing various cascade reactions, due to their highly diverse and yet controllable structures, which are well determined by their sequences. The introduction of unnatural moieties into nucleic acids dramatically increased the diversity of sequences, structures, and properties of the nucleic acids, which undoubtedly expanded the toolbox for making nanomaterials and scaffolds of multi-enzyme systems. In this article, we first introduce the molecular structures and properties of nucleic acids and their unnatural derivatives. Then we summarized representative artificial nanomaterials made of nucleic acids, as well as their properties, functions, and application. We next review recent progress on constructing multi-enzyme systems with nucleic acid structures as scaffolds for cascade biocatalyst. Finally, we discuss the future direction of applying nucleic acid frameworks in the construction of nanomaterials and multi-enzyme molecular machines, with the potential contribution that unnatural nucleic acids may make to this field highlighted.
Collapse
Affiliation(s)
- Gan Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ping Song
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jing Wu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Minglan Luo
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhipeng Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Tingjian Chen
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
6
|
Krissanaprasit A, Key CM, Pontula S, LaBean TH. Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chem Rev 2021; 121:13797-13868. [PMID: 34157230 DOI: 10.1021/acs.chemrev.0c01332] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Researchers have worked for many decades to master the rules of biomolecular design that would allow artificial biopolymer complexes to self-assemble and function similarly to the diverse biochemical constructs displayed in natural biological systems. The rules of nucleic acid assembly (dominated by Watson-Crick base-pairing) have been less difficult to understand and manipulate than the more complicated rules of protein folding. Therefore, nucleic acid nanotechnology has advanced more quickly than de novo protein design, and recent years have seen amazing progress in DNA and RNA design. By combining structural motifs with aptamers that act as affinity handles and add powerful molecular recognition capabilities, nucleic acid-based self-assemblies represent a diverse toolbox for use by bioengineers to create molecules with potentially revolutionary biological activities. In this review, we focus on the development of self-assembling nucleic acid nanostructures that are functionalized with nucleic acid aptamers and their great potential in wide ranging application areas.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Carson M Key
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Sahil Pontula
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Thomas H LaBean
- Department of Materials Science and Engineering, College of Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
7
|
Krissanaprasit A, Key CM, Froehlich K, Pontula S, Mihalko E, Dupont DM, Andersen ES, Kjems J, Brown AC, LaBean TH. Multivalent Aptamer-Functionalized Single-Strand RNA Origami as Effective, Target-Specific Anticoagulants with Corresponding Reversal Agents. Adv Healthc Mater 2021; 10:e2001826. [PMID: 33882195 DOI: 10.1002/adhm.202001826] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Anticoagulants are commonly utilized during surgeries and to treat thrombotic diseases like stroke and deep vein thrombosis. However, conventional anticoagulants have serious side-effects, narrow therapeutic windows, and lack safe reversal agents (antidotes). Here, an alternative RNA origami displaying RNA aptamers as target-specific anticoagulant is described. Improved design and construction techniques for self-folding, single-molecule RNA origami as a platform for displaying pre-selected RNA aptamers with precise orientational and spatial control are reported. Nuclease resistance is added using 2'-fluoro-modified pyrimidines during in vitro transcription. When four aptamers are displayed on the RNA origami platform, the measured thrombin inhibition and anticoagulation activity is higher than observed for free aptamers, ssRNA-linked RNA aptamers, and RNA origami displaying fewer aptamers. Importantly, thrombin inhibition is immediately switched off by addition of specific reversal agents. Results for single-stranded DNA (ssDNA) and single-stranded peptide nucleic acid (PNA) antidotes show restoration of 63% and 95% coagulation activity, respectively. To demonstrate potential for practical, long-term storage for clinical use, RNA origami is freeze-dried, and stored at room temperature. Freshly produced and freeze-dried RNA show identical levels of activity in coagulation assays. Compared to current commercial intravenous anticoagulants, RNA origami-based molecules show promise as safer alternatives with rapid activity switching for future therapeutic applications.
Collapse
Affiliation(s)
- Abhichart Krissanaprasit
- Department of Materials Science and Engineering College of Engineering North Carolina State University Raleigh NC 27695 USA
| | - Carson M. Key
- Department of Materials Science and Engineering College of Engineering North Carolina State University Raleigh NC 27695 USA
| | - Kristen Froehlich
- Joint Department of Biomedical Engineering College of Engineering North Carolina State University and University of North Carolina – Chapel Hill Raleigh NC 27695 USA
| | | | - Emily Mihalko
- Joint Department of Biomedical Engineering College of Engineering North Carolina State University and University of North Carolina – Chapel Hill Raleigh NC 27695 USA
| | - Daniel M. Dupont
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus C Aarhus 8000 Denmark
| | - Ebbe S. Andersen
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus C Aarhus 8000 Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University Aarhus C Aarhus 8000 Denmark
| | - Ashley C. Brown
- Joint Department of Biomedical Engineering College of Engineering North Carolina State University and University of North Carolina – Chapel Hill Raleigh NC 27695 USA
- Comparative Medicine Institute North Carolina State University and University of North Carolina – Chapel Hill Raleigh NC 27695 USA
| | - Thomas H. LaBean
- Department of Materials Science and Engineering College of Engineering North Carolina State University Raleigh NC 27695 USA
- Comparative Medicine Institute North Carolina State University and University of North Carolina – Chapel Hill Raleigh NC 27695 USA
| |
Collapse
|
8
|
RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds. Nat Chem 2021; 13:549-558. [PMID: 33972754 PMCID: PMC7610888 DOI: 10.1038/s41557-021-00679-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
RNA origami is a framework for the modular design of nanoscaffolds that can be folded from a single strand of RNA, and used to organize molecular components with nanoscale precision. Design of genetically expressible RNA origami, which must cotranscriptionally fold, requires modeling and design tools that simultaneously consider thermodynamics, folding pathway, sequence constraints, and pseudoknot optimization. Here, we describe RNA Origami Automated Design software (ROAD), which builds origami models from a library of structural modules, identifies potential folding barriers, and designs optimized sequences. Using ROAD, we extend the scale and functional diversity of RNA scaffolds, creating 32 designs of up to 2360 nucleotides, five that scaffold two proteins, and seven that scaffold two small molecules at precise distances. Micrographic and chromatographic comparison of optimized and nonoptimized structures validates that our principles for strand routing and sequence design substantially improve yield. By providing efficient design of RNA origami, ROAD may simplify construction of custom RNA scaffolds for nanomedicine and synthetic biology.
Collapse
|
9
|
Ryckelynck M. Development and Applications of Fluorogen/Light-Up RNA Aptamer Pairs for RNA Detection and More. Methods Mol Biol 2021; 2166:73-102. [PMID: 32710404 DOI: 10.1007/978-1-0716-0712-1_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The central role of RNA in living systems made it highly desirable to have noninvasive and sensitive technologies allowing for imaging the synthesis and the location of these molecules in living cells. This need motivated the development of small pro-fluorescent molecules called "fluorogens" that become fluorescent upon binding to genetically encodable RNAs called "light-up aptamers." Yet, the development of these fluorogen/light-up RNA pairs is a long and thorough process starting with the careful design of the fluorogen and pursued by the selection of a specific and efficient synthetic aptamer. This chapter summarizes the main design and the selection strategies used up to now prior to introducing the main pairs. Then, the vast application potential of these molecules for live-cell RNA imaging and other applications is presented and discussed.
Collapse
Affiliation(s)
- Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France.
| |
Collapse
|
10
|
Torelli E, Kozyra J, Shirt-Ediss B, Piantanida L, Voïtchovsky K, Krasnogor N. Cotranscriptional Folding of a Bio-orthogonal Fluorescent Scaffolded RNA Origami. ACS Synth Biol 2020; 9:1682-1692. [PMID: 32470289 DOI: 10.1021/acssynbio.0c00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The scaffolded origami technique is an attractive tool for engineering nucleic acid nanostructures. This paper demonstrates scaffolded RNA origami folding in vitro in which, for the first time, all components are transcribed simultaneously in a single-pot reaction. Double-stranded DNA sequences are transcribed by T7 RNA polymerase into scaffold and staple strands able to correctly fold in a high synthesis yield into the nanoribbon. Synthesis is successfully confirmed by atomic force microscopy, and the unpurified transcription reaction mixture is analyzed by an in gel-imaging assay where the transcribed RNA nanoribbons are able to capture the specific dye through the reconstituted split Broccoli aptamer showing a clear green fluorescent band. Finally, we simulate the RNA origami in silico using the nucleotide-level coarse-grained model oxRNA to investigate the thermodynamic stability of the assembled nanostructure in isothermal conditions over a period of time. Our work suggests that the scaffolded origami technique is a viable, and potentially more powerful, assembly alternative to the single-stranded origami technique for future in vivo applications.
Collapse
Affiliation(s)
- Emanuela Torelli
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| | - Jerzy Kozyra
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| | - Ben Shirt-Ediss
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| | - Luca Piantanida
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Kislon Voïtchovsky
- Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex BioSystems (ICOS), Centre for Synthetic Biology and Bioeconomy (CSBB), Devonshire Building, Newcastle University, Newcastle upon Tyne NE1 7RX, United Kingdom
| |
Collapse
|
11
|
Steinmetzger C, Bäuerlein C, Höbartner C. Supramolecular Fluorescence Resonance Energy Transfer in Nucleobase‐Modified Fluorogenic RNA Aptamers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Carmen Bäuerlein
- Institute of Organic ChemistryUniversity of Würzburg Am Hubland 97074 Würzburg Germany
| | - Claudia Höbartner
- Institute of Organic ChemistryUniversity of Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
12
|
Steinmetzger C, Bäuerlein C, Höbartner C. Supramolecular Fluorescence Resonance Energy Transfer in Nucleobase-Modified Fluorogenic RNA Aptamers. Angew Chem Int Ed Engl 2020; 59:6760-6764. [PMID: 32052536 PMCID: PMC7187157 DOI: 10.1002/anie.201916707] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Indexed: 12/14/2022]
Abstract
RNA aptamers form compact tertiary structures and bind their ligands in specific binding sites. Fluorescence-based strategies reveal information on structure and dynamics of RNA aptamers. Herein, we report the incorporation of the universal emissive nucleobase analog 4-cyanoindole into the fluorogenic RNA aptamer Chili, and its application as a donor for supramolecular FRET to the bound ligands DMHBI+ or DMHBO+ . The photophysical properties of the new nucleobase-ligand-FRET pair revealed structural restraints for the overall RNA aptamer organization and identified nucleotide positions suitable for FRET-based readout of ligand binding. This strategy is generally suitable for binding-site mapping and may also be applied for responsive aptamer devices.
Collapse
Affiliation(s)
| | - Carmen Bäuerlein
- Institute of Organic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| | - Claudia Höbartner
- Institute of Organic ChemistryUniversity of WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
13
|
Chen S, Hermann T. RNA-DNA hybrid nanoshapes that self-assemble dependent on ligand binding. NANOSCALE 2020; 12:3302-3307. [PMID: 31971536 DOI: 10.1039/c9nr09706f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-assembly of nucleic acid nanostructures is driven by selective association of oligonucleotide modules through base pairing between complementary sequences. Herein, we report the development of RNA-DNA hybrid nanoshapes that conditionally assemble under the control of an adenosine ligand. The design concept for the nanoshapes relies on ligand-dependent stabilization of DNA aptamers that serve as connectors between marginally stable RNA corner modules. Ligand-dependent RNA-DNA nanoshapes self-assemble in an all-or-nothing process by coupling adenosine binding to the formation of circularly closed structures which are stabilized through continuous base stacking in the resulting polygons. By screening combinations of various DNA aptamer constructs with RNA corner modules for the formation of stable complexes, we identified adenosine-dependent nanosquares whose shape was confirmed by atomic force microscopy. As a proof-of-concept for sensor applications, adenosine-responsive FRET-active nanosquares were obtained by dye conjugation of the DNA aptamer components.
Collapse
Affiliation(s)
- Shi Chen
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Thomas Hermann
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA. and Center for Drug Discovery Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Halman JR, Afonin KA. Editorial for the Special Issue on "Nucleic Acid Architectures for Therapeutics, Diagnostics, Devices and Materials". NANOMATERIALS 2019; 9:nano9070951. [PMID: 31261977 PMCID: PMC6669640 DOI: 10.3390/nano9070951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 06/29/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Justin R Halman
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|