1
|
Sudheendra Budhiraju V, Runkana V, Sharma A, Sivakumar S. Electrospun Mesoporous Ni 0.5Zn 0.5Fe 2O 4 - CNT - Hollow Carbon Ternary Composite Nanofibers as High Performance Electrodes for Advanced Symmetric Supercapacitors. Chem Asian J 2025; 20:e202400815. [PMID: 39382345 DOI: 10.1002/asia.202400815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
Spinel ferrites have attracted considerable interest in energy storage systems due to their unique magnetic, electrical and catalytic properties. However, they suffer from poor electronic conductivity and low specific capacity. We have addressed this limitation by synthesizing composite hollow carbon nanofibers (HCNF) embedded with nanostructured Nickel Zinc Ferrite (NZF) and Multiwalled carbon nanotubes (CNT), through coaxial electrospinning. These ternary composite nanofibers NZF-CNT-HCNF have a high specific capacity of 833 C g-1 at a current density of 1 A g-1 and have a capacity retention of 90 % after 3000 cycles. Their performance is much better than pure NZF fibers (180 C g-1) or hollow carbon nanofibers (96 C g-1), suggesting synergy between various constituents of the composite. A symmetric supercapacitor fabricated from NZF-CNT-HCNF composite nanofibers (30 % NZF) has a high specific capacity of 302 C g-1 (302 A g-1) at a current density of 1 A g-1 and has a capacity retention of 95 % after 5000 cycles. At the same current density, the device has a high energy density of 39 Whkg-1 and power density of 1000 Wkg-1 at a current density of 1 A g-1. This performance can be attributed to the high specific surface area (776 m2 g-1), mesoporosity (pore size ~4 nm), interconnectedness of the nanofibers and high electrical conductivity of CNTs. These fibers can be used as light-weight high performance electrode materials in advanced energy storage devices.
Collapse
Affiliation(s)
- Venkata Sudheendra Budhiraju
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, UP, 208016, Kanpur, India
- Tata Research Development and Design Centre, A Division of Tata Consultancy Services Limited, 54-B, Hadapsar Industrial Estate, Pune, 411013, India
| | - Venkataramana Runkana
- Tata Research Development and Design Centre, A Division of Tata Consultancy Services Limited, 54-B, Hadapsar Industrial Estate, Pune, 411013, India
| | - Ashutosh Sharma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, UP, 208016, Kanpur, India
- Thematic Unit of Excellence on Soft Nanofabrication, Indian Institute of Technology Kanpur, UP, 208016, Kanpur, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, UP, 208016, Kanpur, India
| | - Sri Sivakumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, UP, 208016, Kanpur, India
- Thematic Unit of Excellence on Soft Nanofabrication, Indian Institute of Technology Kanpur, UP, 208016, Kanpur, India
- Material Science Programme, Indian Institute of Technology Kanpur, UP, 208016, Kanpur, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, UP, 208016, Kanpur, India
| |
Collapse
|
2
|
Moradi SAH, Ghobadi N. Fabrication of composite GO/NiFe 2O 4-MnFe 2O 4-CoFe 2O 4 anode material: Toward high performance hybrid supercapacitors. Microsc Res Tech 2024; 87:2459-2474. [PMID: 38856319 DOI: 10.1002/jemt.24615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/24/2024] [Accepted: 05/12/2024] [Indexed: 06/11/2024]
Abstract
Here, NiFe2O4, MnFe2O4, and CoFe2O4 nanoferrites are prepared by coprecipitation synthesis technique from nickel, manganese, and cobalt chloride precursors. Synthesized nanoferrites are annealed by calcination process at 800°C for 2 h. To produce a novel anode electrode material for asymmetric supercapacitors (ASCs), the composite material of GO/NiFe2O4-MnFe2O4-CoFe2O4 is fabricated. Physicochemical aspects of the synthesized nanoferrites are evaluated. X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and x-ray photoelectron spectroscopy tests are conducted, respectively. The electrochemical activities are studied by cyclic voltammetry, glavanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS) in 2 M KOH as the electrolyte. In three electrode system, the novel GO/NiFe2O4-MnFe2O4-CoFe2O4 electrode displays a high specific capacity of 325 C g-1 and preserves about 99.9% of its initial specific capacity. The GO/NiFe2O4-MnFe2O4-CoFe2O4//GO ASCs device is assembled using GO/NiFe2O4-MnFe2O4-CoFe2O4, GO, and 2 M KOH solution as the positive electrode, negative electrode, and electrolyte, respectively. Significantly, the GO/NiFe2O4-MnFe2O4-CoFe2O4//GO ASCs represent an outstanding energy density of 50.5 W h kg-1 at power density of 2560 W kg-1. Through the long-term charge discharge cycling tests, this ASC device illustrates about 93.7% capacity retention after 3000 cycles. Then, the present study provides the NiFe2O4-MnFe2O4-CoFe2O4 composite nanoferrites as a novel favorable candidate for anode material. RESEARCH HIGHLIGHTS: Simple and green synthesis of magnetic NiCo2O4/NiO/rGO composite nanostructure using natural precursor. Fabricating and designing an efficient semiconductor for degradation ability. NiCo2O4/NiO/rGO nanocomposite with advanced photo elimination catalytic routine. The photocatalytic performance of NiCo2O4/NiO/rGO was surveyed for the degradation of various antibiotics below visible radiation. Efficiency was 92.9% to eliminate tetracycline. We developed a synergetic approach to prepare a novel active material composed of GO/ NiFe2O4-MnFe2O4-CoFe2O4 by a hybrid electrode material. Green synthesis method was accomplished to attain NiCo2O4/NiO/rGO nanocomposite with advanced photo elimination catalytic routine. The oxide nanobundles were prepared with a rapid and eco-friendly method. In order to investigation of the effect of natural precursor, morphology and shape of nanoproducts was compared. NiCo2O4/NiO/rGO nanobundles possess a suitable bandgap in the visible area.
Collapse
Affiliation(s)
| | - Nader Ghobadi
- Department of Physics, Faculty of Science, Malayer University, Malayer, Iran
| |
Collapse
|
3
|
Barik S, Sarangi SS. Molecular dynamics simulation studies on tensile mechanical properties of zirconium nanowire: effect of temperature, diameter, and strain rate. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2159997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Seshadev Barik
- Department of Physics, Veer Surendra Sai University of Technology, Burla, India
| | - Soumya S. Sarangi
- Department of Physics, Veer Surendra Sai University of Technology, Burla, India
| |
Collapse
|
4
|
Kiran, Thakur N. Nanostructured MnFe2O4 anchored on graphene oxide and reduced graphene oxide sheets for effective regulation of microwave absorption performance. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Exalted redox frameworks of Cu-MOF/polyaniline/RGO based composite electrodes by integrating silver nanoparticles as a catalytic agent for superior energy featured supercapatteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
|
7
|
Xiang J, Zhang P, Lv S, Ma Y, Zhao Q, Sui Y, Ye Y, Qin C. Spinel LiMn 2O 4 nanoparticles fabricated by the flexible soft template/Pichini method as cathode materials for aqueous lithium-ion capacitors with high energy and power density. RSC Adv 2021; 11:14891-14898. [PMID: 35424028 PMCID: PMC8698631 DOI: 10.1039/d0ra07823a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Spinel LiMn2O4 (LMO) with a three-dimensional structure has become one of the cathode materials that has gained the most interest due to its safety, low price and abundant resources. However, the lithium ion transmission is limited by large particle size and particle agglomeration of LMO. Thus, reducing the particle size and agglomeration of LMO can effectively improve its lithium ion transmission. Here, we synthesized a LMO cathode material with a nanoscale crystal size using the flexible expanded graphite (EG) soft template and Pichini method. EG-controlled particle size and particle agglomeration of LMO is conducive to charge transfer and diffusion of lithium ions between LMO and the electrolyte, meanwhile, there are more redox sites on the nanosized LMO particles, which makes the redox reaction of LMO more thorough during the charge and discharge process, resulting in high capacitance performance. In order to obtain the considerably required lithium-ion capacitors (LICs) with high energy density and power density, we assembled aqueous LMO//activated carbon (AC) LICs with 5 M LiNO3 as the aqueous electrolytes, which are environmentally friendly, safe, low cost and have higher electrical conductivity than organic electrolytes. The optimal LIC has an energy density of 32.63 W h kg-1 at a power density of 500 W kg-1 and an energy density of 8.06 W h kg-1 at a power density of 10 000 W kg-1, which is higher than most of the LMO-based LICs in previous reports. After 2000 cycles, the specific capacitance retention rate was 75.9% at a current density of 3 A g-1. Therefore, our aqueous LMO//AC LICs synthesized by the soft template/Pichini method have wide prospects and are suitable for low-cost, high-safety and high-power applications.
Collapse
Affiliation(s)
- Junyu Xiang
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province Harbin 150080 PR China
- School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Pengxue Zhang
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province Harbin 150080 PR China
- School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Shixian Lv
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province Harbin 150080 PR China
- School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Yongjun Ma
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province Harbin 150080 PR China
- School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Qi Zhao
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province Harbin 150080 PR China
- School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Yan Sui
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province Harbin 150080 PR China
- School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Yuncheng Ye
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province Harbin 150080 PR China
- School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| | - Chuanli Qin
- Key Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Heilongjiang Province Harbin 150080 PR China
- School of Chemistry and Materials Science, Heilongjiang University Harbin 150080 China
| |
Collapse
|
8
|
Balaji TE, Tanaya Das H, Maiyalagan T. Recent Trends in Bimetallic Oxides and Their Composites as Electrode Materials for Supercapacitor Applications. ChemElectroChem 2021. [DOI: 10.1002/celc.202100098] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- T. Elango Balaji
- Electrochemical Energy Laboratory Department of Chemistry SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603 203 India
| | - Himadri Tanaya Das
- Department of Materials and Mineral Resources Engineering, NTUT No. 1, Sec. 3, Chung-Hsiao East Rd. Taipei 106 Taiwan, ROC
- Centre of Excellence for Advanced Materials and Applications Utkal university Vanivihar Bhubaneswar 751004 Odisha India
| | - T. Maiyalagan
- Electrochemical Energy Laboratory Department of Chemistry SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603 203 India
| |
Collapse
|
9
|
Asiabar BM, Karimi MA, Tavallali H, Rahimi-Nasrabadi M. Application of MnFe2O4 and AuNPs modified CPE as a sensitive flunitrazepam electrochemical sensor. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
Fei M, Zhang R, Li L, Li J, Ma Z, Zhang K, Li Z, Yu Z, Xiao Q, Yan D. Epitaxial growth of MnFe2O4 nanosheets arrays for supercapacitor. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137586] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Rajkumar S, Gowri S, Dhineshkumar S, Merlin JP, Sathiyan A. Investigation on NiWO 4/PANI composite as an electrode material for energy storage devices. NEW J CHEM 2021. [DOI: 10.1039/d1nj03831a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
NiWO4/PANI was synthesized by an in situ chemical oxidative polymerization route. Incorporation of NiWO4 in a PANI matrix rendered high specific capacitance and salient morphological features.
Collapse
Affiliation(s)
- S. Rajkumar
- PG & Research Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620 017, Tamil Nadu, India
| | - S. Gowri
- Department of Physics, Cauvery College for Women, Affiliated to Bharathidasan University, Tiruchirappalli-620 018, Tamil Nadu, India
| | - S. Dhineshkumar
- PG & Research Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620 017, Tamil Nadu, India
| | - J. Princy Merlin
- PG & Research Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620 017, Tamil Nadu, India
| | - A. Sathiyan
- PG & Research Department of Chemistry, Bishop Heber College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli-620 017, Tamil Nadu, India
| |
Collapse
|
12
|
Abstract
The world is suffering from chronic water shortage due to the increasing population, water pollution and industrialization. Desalinating saline water offers a rational choice to produce fresh water thus resolving the crisis. Among various kinds of desalination technologies, capacitive deionization (CDI) is of significant potential owing to the facile process, low energy consumption, mild working conditions, easy regeneration, low cost and the absence of secondary pollution. The electrode material is an essential component for desalination performance. The most used electrode material is carbon-based material, which suffers from low desalination capacity (under 15 mg·g−1). However, the desalination of saline water with the CDI method is usually the charging process of a battery or supercapacitor. The electrochemical capacity of battery electrode material is relatively high because of the larger scale of charge transfer due to the redox reaction, thus leading to a larger desalination capacity in the CDI system. A variety of battery materials have been developed due to the urgent demand for energy storage, which increases the choices of CDI electrode materials largely. Sodium-ion battery materials, lithium-ion battery materials, chloride-ion battery materials, conducting polymers, radical polymers, and flow battery electrode materials have appeared in the literature of CDI research, many of which enhanced the deionization performances of CDI, revealing a bright future of integrating battery materials with CDI technology.
Collapse
|
13
|
Magnetic MnFe2O4 Core–shell nanoparticles coated with antibiotics for the ablation of pathogens. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01306-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Wu L, Sun L, Li X, Zhang Q, Zhang Y, Gu J, Wang K, Zhang Y. CuCo 2 S 4 -rGO Microflowers: First-Principle Calculation and Application in Energy Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001468. [PMID: 32519390 DOI: 10.1002/smll.202001468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
This paper demonstrates the ability of a CuCo2 S4 -reduced graphene oxide (rGO) composite to perform robust electrochemical performances applying to supercapacitors (SCs) and lithium ion batteries (LIBs). The first-principle calculation based on density functional theory is conducted to study the electronic property of CuCo2 O4 and CuCo2 S4 and provide a theoretical basis for this work. Then, the 3D spinel-structured CuCo2 O4 and CuCo2 S4 microflowers are synthesized and compared as electrodes for both SCs and LIBs. The CuCo2 S4 microflowers can provide a larger specific surface area, which enlarges the contact area between the electrode material and the electrolyte and contributes to high-efficiency electrochemical reactions. The reduced graphene oxides are coated on the CuCo2 S4 microflowers, therefore effectively increasing the conductivity, and further absorbing the stress produced in the reaction process. As an electrode of a symmetric supercapacitor, the optimized CuCo2 S4 -rGO composite exhibits an energy density of 16.07 Wh kg-1 and a maximum power density of 3600 W kg-1 . Moreover, the CuCo2 S4 -rGO composite can also be used as an anode for lithium ion batteries, exhibiting a reversible capacity of 1050 mAh g-1 after 140 cycles at the current density of 200 mA g-1 . The galvanostatic intermittence titration techniques also reveal superior Li-ion diffusion behavior of the CuCo2 S4 -rGO composite during redox reactions.
Collapse
Affiliation(s)
- Lin Wu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Li Sun
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Xiaowei Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Qiuyu Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Yuanxing Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Jialin Gu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Ke Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| |
Collapse
|
15
|
|
16
|
Achieving Ultrahigh Cycling Stability and Extended Potential Window for Supercapacitors through Asymmetric Combination of Conductive Polymer Nanocomposite and Activated Carbon. Polymers (Basel) 2019; 11:polym11101678. [PMID: 31615090 PMCID: PMC6835797 DOI: 10.3390/polym11101678] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022] Open
Abstract
Conducting polymers and carbon-based materials such as graphene oxide (GO) and activated carbon (AC) are the most promising capacitive materials, though both offer charge storage through different mechanisms. However, their combination can lead to some unusual results, offering improvement in certain properties in comparison with the individual materials. Cycling stability of supercapacitors devices is often a matter of concern, and extensive research is underway to improve this phenomena of supercapacitive devices. Herein, a high-performance asymmetric supercapacitor device was fabricated using graphene oxide–polyaniline (GO@PANI) nanocomposite as positive electrode and activated carbon (AC) as negative electrode. The device showed 142 F g−1 specific capacitance at 1 A g−1 current density with capacitance retention of 73.94% at higher current density (10 A g−1). Most importantly, the device exhibited very high electrochemical cycling stability. It retained 118.6% specific capacitance of the starting value after 10,000 cycles at 3 Ag−1 and with coulombic efficiency of 98.06 %, indicating great potential for practical applications. Very small solution resistance (Rs, 0.640 Ω) and charge transfer resistance (Rct, 0.200 Ω) were observed hinting efficient charge transfer and fast ion diffusion. Due to asymmetric combination, potential window was extended to 1.2 V in aqueous electrolyte, as a result higher energy density (28.5 Wh kg−1) and power density of 2503 W kg−1 were achieved at the current density 1 Ag−1. It also showed an aerial capacitance of 57 mF cm−2 at current 3.2 mA cm−2. At this current density, its energy density was maximum (0.92 mWh cm−2) with power density (10.47 W cm−2).
Collapse
|
17
|
Cobalt-Containing Nanoporous Nitrogen-Doped Carbon Nanocuboids from Zeolite Imidazole Frameworks for Supercapacitors. NANOMATERIALS 2019; 9:nano9081110. [PMID: 31382437 PMCID: PMC6723694 DOI: 10.3390/nano9081110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023]
Abstract
Pyrolyzing metal-organic frameworks (MOFs) typically yield composites consisting of metal/metal oxide nanoparticles finely dispersed on carbon matrices. The blend of pseudocapacitive metal oxides and conductive metals, as well as highly porous carbon networks, offer unique opportunities to obtain supercapacitor electrodes with mutually high capacitances and excellent rate capabilities. Herein, we demonstrate nitrogen-doped carbon nanocuboid arrays grown on carbon fibers and incorporating cobalt metal and cobalt metal oxides. This composite was synthesized via pyrolysis of a chemical bath deposited MOF, cobalt-containing zeolite imidazole framework (Co-ZIF). The active materials for charge storage are the cobalt oxide and nitrogen-doped carbon. Additionally, the Co metal and the nanoporous carbon network facilitated electron transport and the rich nanopores in each nanocuboid shortened ion diffusion distance. Benefited from these merits, our Co-ZIF-derived electrode delivered an areal capacitance of 1177 mF cm-2 and excellent cycling stability of ~94% capacitance retained after 20,000 continuous charge-discharge cycles. An asymmetric supercapacitor prototype having the Co-ZIF-derived hybrid material (positive electrode) and activated carbon (negative electrode) achieved a maximal volumetric energy density of 1.32 mWh cm-3 and the highest volumetric power density of 376 mW cm-3. This work highlights the promise of metal-metal oxide-carbon nanostructured composites as electrodes in electrochemical energy storage devices.
Collapse
|