1
|
Lin K, Luo X, Du C, Zuo C, Li Z, Zhang G, Li C, Zhu L. ANRIL modulates endothelial senescence and angiogenesis through SASP-driven miR146a regulation in age-related vascular dysfunction. Mech Ageing Dev 2025; 225:112058. [PMID: 40222710 DOI: 10.1016/j.mad.2025.112058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/15/2025]
Abstract
Vascular aging, marked by endothelial cell (EC) dysfunction and compromised angiogenesis, is a central driver of age-related ischemic diseases. Although lncRNAs have emerged as pivotal regulators of endothelial function, their specific roles in endothelial aging remain enigmatic. In this study, we identify the lncRNA ANRIL as a crucial modulator of endothelial dysfunction during aging. By analyzing publicly available lncRNA sequencing datasets comparing young and old ECs, we pinpointed ANRIL and validated its role through a replicative senescence model in human umbilical vein ECs (HUVECs) and FACS sorting of skeletal muscle ECs from aged mice. While ANRIL showed minimal direct effects on angiogenesis, functional assays and transcriptomic analysis revealed its profound impact on the senescence-associated secretory phenotype (SASP). Remarkably, ANRIL regulates the expression of miR146a in ECs, which is transferred to macrophages, where it inhibits VEGF secretion and disrupts endothelial neovascularization. In vivo, ANRIL downregulation in a murine hindlimb ischemia model significantly enhanced neovascularization and restored blood flow, revealing its therapeutic potential for ischemic diseases. These findings position ANRIL as a novel, potent regulator of endothelial senescence, offering new insights into the molecular basis of vascular aging and suggesting ANRIL as a promising therapeutic target to mitigate age-related vascular dysfunction.
Collapse
Affiliation(s)
- Kechuan Lin
- Department of geriatric, Coronary Circulation Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China; The Third Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Xin Luo
- Department of geriatric, Coronary Circulation Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Can Du
- Department of geriatric, Coronary Circulation Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Chenzhe Zuo
- Department of geriatric, Coronary Circulation Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Zhenyu Li
- Department of geriatric, Coronary Circulation Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Guogang Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China; The Third Xiangya Hospital of Central South University, Changsha, Hunan 410008, China
| | - Chuanchang Li
- Department of geriatric, Coronary Circulation Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China
| | - Lingping Zhu
- Department of geriatric, Coronary Circulation Center, Xiangya Hospital of Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan 410008, China.
| |
Collapse
|
2
|
Bekkouche I, Shishonin AY, Vetcher AA. Recent Development in Biomedical Applications of Oligonucleotides with Triplex-Forming Ability. Polymers (Basel) 2023; 15:858. [PMID: 36850142 PMCID: PMC9964087 DOI: 10.3390/polym15040858] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
A DNA structure, known as triple-stranded DNA, is made up of three oligonucleotide chains that wind around one another to form a triple helix (TFO). Hoogsteen base pairing describes how triple-stranded DNA may be built at certain conditions by the attachment of the third strand to an RNA, PNA, or DNA, which might all be employed as oligonucleotide chains. In each of these situations, the oligonucleotides can be employed as an anchor, in conjunction with a specific bioactive chemical, or as a messenger that enables switching between transcription and replication through the triplex-forming zone. These data are also considered since various illnesses have been linked to the expansion of triplex-prone sequences. In light of metabolic acidosis and associated symptoms, some consideration is given to the impact of several low-molecular-weight compounds, including pH on triplex production in vivo. The review is focused on the development of biomedical oligonucleotides with triplexes.
Collapse
Affiliation(s)
- Incherah Bekkouche
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
| | - Alexander Y. Shishonin
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| | - Alexandre A. Vetcher
- Nanotechnology Scientific and Educational Center, Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), Miklukho-Maklaya Str. 6, Moscow 117198, Russia
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5, Yasnogorskaya Str., Moscow 117588, Russia
| |
Collapse
|
3
|
Fossel M, Bean J, Khera N, Kolonin MG. A Unified Model of Age-Related Cardiovascular Disease. BIOLOGY 2022; 11:1768. [PMID: 36552277 PMCID: PMC9775230 DOI: 10.3390/biology11121768] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Despite progress in biomedical technologies, cardiovascular disease remains the main cause of mortality. This is at least in part because current clinical interventions do not adequately take into account aging as a driver and are hence aimed at suboptimal targets. To achieve progress, consideration needs to be given to the role of cell aging in disease pathogenesis. We propose a model unifying the fundamental processes underlying most age-associated cardiovascular pathologies. According to this model, cell aging, leading to cell senescence, is responsible for tissue changes leading to age-related cardiovascular disease. This process, occurring due to telomerase inactivation and telomere attrition, affects all components of the cardiovascular system, including cardiomyocytes, vascular endothelial cells, smooth muscle cells, cardiac fibroblasts, and immune cells. The unified model offers insights into the relationship between upstream risk factors and downstream clinical outcomes and explains why interventions aimed at either of these components have limited success. Potential therapeutic approaches are considered based on this model. Because telomerase activity can prevent and reverse cell senescence, telomerase gene therapy is discussed as a promising intervention. Telomerase gene therapy and similar systems interventions based on the unified model are expected to be transformational in cardiovascular medicine.
Collapse
Affiliation(s)
| | - Joe Bean
- University of Missouri School of Medicine, Kansas City, MO 65211, USA
| | - Nina Khera
- Buckingham Browne and Nichols School, Wellesley, MA 02138, USA
| | - Mikhail G. Kolonin
- University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
4
|
Warwick T, Seredinski S, Krause NM, Bains JK, Althaus L, Oo JA, Bonetti A, Dueck A, Engelhardt S, Schwalbe H, Leisegang MS, Schulz MH, Brandes RP. A universal model of RNA.DNA:DNA triplex formation accurately predicts genome-wide RNA-DNA interactions. Brief Bioinform 2022; 23:6760135. [PMID: 36239395 PMCID: PMC9677506 DOI: 10.1093/bib/bbac445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 09/17/2022] [Indexed: 12/14/2022] Open
Abstract
RNA.DNA:DNA triple helix (triplex) formation is a form of RNA-DNA interaction which regulates gene expression but is difficult to study experimentally in vivo. This makes accurate computational prediction of such interactions highly important in the field of RNA research. Current predictive methods use canonical Hoogsteen base pairing rules, which whilst biophysically valid, may not reflect the plastic nature of cell biology. Here, we present the first optimization approach to learn a probabilistic model describing RNA-DNA interactions directly from motifs derived from triplex sequencing data. We find that there are several stable interaction codes, including Hoogsteen base pairing and novel RNA-DNA base pairings, which agree with in vitro measurements. We implemented these findings in TriplexAligner, a program that uses the determined interaction codes to predict triplex binding. TriplexAligner predicts RNA-DNA interactions identified in all-to-all sequencing data more accurately than all previously published tools in human and mouse and also predicts previously studied triplex interactions with known regulatory functions. We further validated a novel triplex interaction using biophysical experiments. Our work is an important step towards better understanding of triplex formation and allows genome-wide analyses of RNA-DNA interactions.
Collapse
Affiliation(s)
- Timothy Warwick
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany,DZHK (German Center for Cardiovascular Research), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Sandra Seredinski
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany,DZHK (German Center for Cardiovascular Research), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Nina M Krause
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Lara Althaus
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - James A Oo
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany,DZHK (German Center for Cardiovascular Research), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Alessandro Bonetti
- Translational Genomics, Discovery Sciences, Bio Pharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50 Mölndal, Sweden
| | - Anne Dueck
- Institute of Pharmacology and Toxicology, Technical University of Munich, Biedersteiner Str. 29, D-80802, Munich, Germany,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technical University of Munich, Biedersteiner Str. 29, D-80802, Munich, Germany,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Max-von-Laue-Str. 7, D-60438, Frankfurt am Main, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany,DZHK (German Center for Cardiovascular Research), Partner site Rhein-Main, Frankfurt am Main, Germany
| | - Marcel H Schulz
- Corresponding authors. Ralf P. Brandes, Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany. E-mail: ; Marcel H. Schulz, Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany. E-mail:
| | - Ralf P Brandes
- Corresponding authors. Ralf P. Brandes, Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany. E-mail: ; Marcel H. Schulz, Institute for Cardiovascular Physiology, Goethe University, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany. E-mail:
| |
Collapse
|
5
|
Hussen BM, Kheder RK, Abdullah ST, Hidayat HJ, Rahman HS, Salihi A, Taheri M, Ghafouri-Fard S. Functional interplay between long non-coding RNAs and Breast CSCs. Cancer Cell Int 2022; 22:233. [PMID: 35864503 PMCID: PMC9306174 DOI: 10.1186/s12935-022-02653-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) represents aggressive cancer affecting most women’s lives globally. Metastasis and recurrence are the two most common factors in a breast cancer patient's poor prognosis. Cancer stem cells (CSCs) are tumor cells that are able to self-renew and differentiate, which is a significant factor in metastasis and recurrence of cancer. Long non-coding RNAs (lncRNAs) describe a group of RNAs that are longer than 200 nucleotides and do not have the ability to code for proteins. Some of these lncRNAs can be mainly produced in various tissues and tumor forms. In the development and spread of malignancies, lncRNAs have a significant role in influencing multiple signaling pathways positively or negatively, making them promise useful diagnostic and prognostic markers in treating the disease and guiding clinical therapy. However, it is not well known how the interaction of lncRNAs with CSCs will affect cancer development and progression. Here, in this review, we attempt to summarize recent findings that focus on lncRNAs affect cancer stem cell self-renewal and differentiation in breast cancer development and progression, as well as the strategies and challenges for overcoming lncRNA's therapeutic resistance.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil , Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq.,Medical Laboratory Science, College of Science, University of Raparin, Rania, KGR, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Republic of Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Elwazir MY, Hussein MH, Toraih EA, Al Ageeli E, Esmaeel SE, Fawzy MS, Faisal S. Association of Angio-LncRNAs MIAT rs1061540/MALAT1 rs3200401 Molecular Variants with Gensini Score in Coronary Artery Disease Patients Undergoing Angiography. Biomolecules 2022; 12:137. [PMID: 35053285 PMCID: PMC8773982 DOI: 10.3390/biom12010137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as essential biomolecules with variable diagnostic and/or prognostic utility in several diseases, including coronary artery disease (CAD). We aimed for the first time to investigate the potential association of five angiogenesis-related lncRNAs (PUNISHER, SENCR, MIAT, MALAT1, and GATA6-AS) variants with CAD susceptibility and/or severity. TaqMan Real-Time genotyping for PUNISHER rs12318065A/C, SENCR rs12420823C/T, MIAT rs1061540C/T, MALAT1 rs3200401T/C, and GATA6-AS1 rs73390820A/G were run on the extracted genomic DNA from 100 unrelated patients with stable CAD undergoing diagnostic coronary angiography and from 100 controls. After adjusting covariates, the studied variants showed no association with disease susceptibility; however, MIAT*T/T genotype was associated with a more severe Gensini score. In contrast, MALAT1*T/C heterozygosity was associated with a lower score. The lipid profile, and to a lesser extent smoking status, male sex, weight, hypertension, and MALAT1 (T > C) (negative correlation), explained the variance between patients/control groups via a principal component analysis. Incorporating the principal components into a logistic regression model to predict CAD yielded a 0.92 AUC. In conclusion: MIAT rs1061540 and MALAT1 rs3200401 variants were associated with CAD severity and Gensini score in the present sample of the Egyptian population. Further large multi-center and functional analyses are needed to confirm the results and identify the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Mohamed Y. Elwazir
- Department of Cardiology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohammad H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA;
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
| | - Safya E. Esmaeel
- Department of Physiology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Salwa Faisal
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
7
|
Munjas J, Sopić M, Stefanović A, Košir R, Ninić A, Joksić I, Antonić T, Spasojević-Kalimanovska V, Prosenc Zmrzljak U. Non-Coding RNAs in Preeclampsia-Molecular Mechanisms and Diagnostic Potential. Int J Mol Sci 2021; 22:10652. [PMID: 34638993 PMCID: PMC8508896 DOI: 10.3390/ijms221910652] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Preeclampsia (PE) is a leading cause of maternal and neonatal morbidity and mortality worldwide. Defects in trophoblast invasion, differentiation of extravillous trophoblasts and spiral artery remodeling are key factors in PE development. Currently there are no predictive biomarkers clinically available for PE. Recent technological advancements empowered transcriptome exploration and led to the discovery of numerous non-coding RNA species of which microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the most investigated. They are implicated in the regulation of numerous cellular functions, and as such are being extensively explored as potential biomarkers for various diseases. Altered expression of numerous lncRNAs and miRNAs in placenta has been related to pathophysiological processes that occur in preeclampsia. In the following text we offer summary of the latest knowledge of the molecular mechanism by which lnRNAs and miRNAs (focusing on the chromosome 19 miRNA cluster (C19MC)) contribute to pathophysiology of PE development and their potential utility as biomarkers of PE, with special focus on sample selection and techniques for the quantification of lncRNAs and miRNAs in maternal circulation.
Collapse
Affiliation(s)
- Jelena Munjas
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Miron Sopić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Aleksandra Stefanović
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Rok Košir
- BIA Separations CRO, Labena Ltd., Street Verovškova 64, 1000 Ljubljana, Slovenia;
| | - Ana Ninić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Ivana Joksić
- Genetic Laboratory Department, Obstetrics and Gynaecology Clinic “Narodni Front”, Street Kraljice Natalije 62, 11000 Belgrade, Serbia;
| | - Tamara Antonić
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | - Vesna Spasojević-Kalimanovska
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Street Vojvode Stepe 450, 11000 Belgrade, Serbia; (J.M.); (M.S.); (A.S.); (A.N.); (T.A.); (V.S.-K.)
| | | |
Collapse
|