1
|
Shaalan AAM, Al Ageeli E, Kattan SW, Almars AI, Babteen NA, Sindi AAA, Toraih EA, Fawzy MS, Mohamed MH. Impacts of DROSHA (rs10719) and DICER (rs3742330) Variants on Breast Cancer Risk and Their Distribution in Blood and Tissue Samples of Egyptian Patients. Curr Issues Mol Biol 2024; 46:10087-10111. [PMID: 39329954 PMCID: PMC11430749 DOI: 10.3390/cimb46090602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression and play critical roles in tumorigenesis. Genetic variants in miRNA processing genes, DROSHA and DICER, have been implicated in cancer susceptibility and progression in various populations. However, their role in Egyptian patients with breast cancer (BC) remains unexplored. This study aims to investigate the association of DROSHA rs10719 and DICER rs3742330 polymorphisms with BC risk and clinical outcomes. This case-control study included 209 BC patients and 106 healthy controls. Genotyping was performed using TaqMan assays in blood, tumor tissue, and adjacent non-cancerous tissue samples. Associations were analyzed using logistic regression and Fisher's exact test. The DROSHA rs10719 AA genotype was associated with a 3.2-fold increased risk (95%CI = 1.23-9.36, p < 0.001), and the DICER rs3742330 GG genotype was associated with a 3.51-fold increased risk (95%CI = 1.5-8.25, p = 0.001) of BC. Minor allele frequencies were 0.42 for rs10719 A and 0.37 for rs3742330 G alleles. The risk alleles were significantly more prevalent in tumor tissue than adjacent normal tissue (rs10719 A: 40.8% vs. 0%; rs3742330 G: 42.7% vs. 0%; p < 0.001). However, no significant associations were observed with clinicopathological features or survival outcomes over a median follow-up of 17 months. In conclusion, DROSHA rs10719 and DICER rs3742330 polymorphisms are associated with increased BC risk and more prevalent in tumor tissue among our cohort, suggesting a potential role in miRNA dysregulation during breast tumorigenesis. These findings highlight the importance of miRNA processing gene variants in BC susceptibility and warrant further validation in larger cohorts and different ethnic populations.
Collapse
Affiliation(s)
- Aly A. M. Shaalan
- Department of Anatomy, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Essam Al Ageeli
- Department of Basic Medical Sciences, Faculty of Medicine, Jazan University, Jazan 45141, Saudi Arabia;
| | - Shahad W. Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46423, Saudi Arabia;
| | - Amany I. Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nouf A. Babteen
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia;
| | - Abdulmajeed A. A. Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65779, Saudi Arabia;
| | - Eman A. Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 91341, Saudi Arabia
- Center for Health Research, Northern Border University, Arar 91431, Saudi Arabia
| | - Marwa Hussein Mohamed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt;
| |
Collapse
|
2
|
Zeng K, Peng J, Xing Y, Zhang L, Zeng P, Li W, Zhang W, Pan Z, Zhou C, Lin J. A positive feedback circuit driven by m 6A-modified circular RNA facilitates colorectal cancer liver metastasis. Mol Cancer 2023; 22:202. [PMID: 38087322 PMCID: PMC10717141 DOI: 10.1186/s12943-023-01848-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/23/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Liver metastasis is the leading cause of death in patients with colorectal cancer (CRC). Emerge evidence suggests that circular RNA (circRNA) is a pivotal player in cancer progression. However, its role in CRC liver metastasis remains largely unknown. METHODS Circ-YAP expression was detected by qRT-PCR and in situ hybridization. The function of circ-YAP was tested by wound healing, transwell and CCK-8 assays. RNA immunoprecipitation, pull-down, luciferase reporter, chromatin immunoprecipitation assays were used to investigate the mechanism underlying circ-YAP promoting CRC liver metastasis. CRC liver metastasis animal model was established to assess the effect of circ-YAP in vivo. RESULTS Circ-YAP was notably upregulated in CRC with liver metastasis, which was associated with dismal prognosis. Circ-YAP promoted CRC cell migration and invasion in vitro, and facilitated liver metastasis in patient-derived xenografts (PDX) models in vivo. Mechanistically, circ-YAP encoded a novel truncated protein containing 220 amino acids, termed as YAP-220aa, which competitively bound to LATS1, resulting in YAP dephosphorylation and nuclear translocation, thereby activating a cohort of metastasis-promoting genes. Importantly, N6-methyladenosine (m6A) modification orchestrated efficient initiation of circ-YAP translation, requiring m6A reader YTHDF3 and eIF4G2 translation initiation complex. Intriguingly, circ-YAP was transcriptionally enhanced by YAP/TEAD complex, thus forming a positive regulatory feed-forward loop. CONCLUSIONS Our findings reveal a previously uncharacterized oncoprotein encoded by circ-YAP, implying a promising biomarker and therapeutic target for CRC patients with liver metastasis.
Collapse
Affiliation(s)
- Kaixuan Zeng
- Precision Medical Research Institute, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Jianhong Peng
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangzhou, China
| | - Yue Xing
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Linjie Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangzhou, China
| | - Peishan Zeng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Weihao Li
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangzhou, China
| | - Weili Zhang
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangzhou, China
| | - Zhizhong Pan
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangzhou, China.
| | - Chi Zhou
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangzhou, China.
| | - Junzhong Lin
- Department of Colorectal Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangzhou, China.
| |
Collapse
|
3
|
Kozlov D, Rodimova S, Kuznetsova D. The Role of MicroRNAs in Liver Functioning: from Biogenesis to Therapeutic Approaches (Review). Sovrem Tekhnologii Med 2023; 15:54-79. [PMID: 39967915 PMCID: PMC11832066 DOI: 10.17691/stm2023.15.5.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 01/03/2025] Open
Abstract
Molecular diagnostics based on small non-coding RNA molecules (in particular microRNA) is a new direction in modern biomedicine and is considered a promising method for identification of a wide range of pathologies at an early stage, clinical phenotype assessment, as well as monitoring the course of the disease, evaluation of therapy efficacy and the risk of the disease recurrence. Currently, the role of microRNAs as the most important epigenetic regulator in cancer development has been proven within the studies of normal and pathogenic processes. However, currently, there are insignificant studies devoted to studying the role of microRNAs in functioning of other organs and tissues, as well as to development of possible therapeutic approaches based on microRNAs. A huge number of metabolic processes in the liver are controlled by microRNAs, which creates enormous potential for the use of microRNAs as a diagnostic marker and makes it a target for therapeutic intervention in metabolic, oncological, and even viral diseases of this organ. This review examines various aspects of biological functions of microRNAs in different types of liver cells. Both canonical and non-canonical pathways of biogenesis, epigenetic regulation mediated by microRNAs, as well as the microRNAs role in intercellular communication and the course of viral diseases are shown. The potential of microRNAs as a diagnostic marker for various liver pathologies is described, as well as therapeutic approaches and medicines based on microRNAs, which are approved for clinical use and currently being developed.
Collapse
Affiliation(s)
- D.S. Kozlov
- Laboratory Assistant, Scientific Laboratory of Molecular Biotechnologies, I Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Student, Institute of Biology and Biomedicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| | - S.A. Rodimova
- Junior Researcher, Laboratory of Regenerative Medicine; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Junior Researcher, Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - D.S. Kuznetsova
- PhD, Head of the Scientific Laboratory of Molecular Biotechnologies, Research Institute of Experimental Oncology and Biomedical Technologies; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia; Head of the Research Laboratory for Molecular Genetic Researches, Institute of Clinical Medicine; National Research Lobachevsky State University of Nizhny Novgorod, 23 Prospekt Gagarina, Nizhny Novgorod, 603022, Russia
| |
Collapse
|
4
|
Mao Y, Zhang M, Wang L, Lu Y, Hu X, Chen Z. Role of microRNA carried by small extracellular vesicles in urological tumors. Front Cell Dev Biol 2023; 11:1192937. [PMID: 37333986 PMCID: PMC10272383 DOI: 10.3389/fcell.2023.1192937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Small extracellular vesicles (sEVs) are minute vesicles secreted by various cells that are capable of transporting cargo, including microRNAs, between donor and recipient cells. MicroRNAs (miRNAs), small non-coding RNAs approximately 22 nucleotides in length, have been implicated in a wide array of biological processes, including those involved in tumorigenesis. Emerging evidence highlights the pivotal role of miRNAs encapsulated in sEVs in both the diagnosis and treatment of urological tumors, with potential implications in epithelial-mesenchymal transition, proliferation, metastasis, angiogenesis, tumor microenvironment and drug resistance. This review provides a brief overview of the biogenesis and functional mechanisms of sEVs and miRNAs, followed by a summarization of recent empirical findings on miRNAs encapsulated in sEVs from three archetypal urologic malignancies: prostate cancer, clear cell renal cell carcinoma, and bladder cancer. We conclude by underscoring the potential of sEV-enclosed miRNAs as both biomarkers and therapeutic targets, with a particular focus on their detection and analysis in biological fluids such as urine, plasma, and serum.
Collapse
Affiliation(s)
- Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
5
|
Mishra A, Kumar R, Mishra SN, Vijayaraghavalu S, Tiwari NK, Shukla GC, Gurusamy N, Kumar M. Differential Expression of Non-Coding RNAs in Stem Cell Development and Therapeutics of Bone Disorders. Cells 2023; 12:cells12081159. [PMID: 37190068 PMCID: PMC10137108 DOI: 10.3390/cells12081159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Stem cells' self-renewal and multi-lineage differentiation are regulated by a complex network consisting of signaling factors, chromatin regulators, transcription factors, and non-coding RNAs (ncRNAs). Diverse role of ncRNAs in stem cell development and maintenance of bone homeostasis have been discovered recently. The ncRNAs, such as long non-coding RNAs, micro RNAs, circular RNAs, small interfering RNA, Piwi-interacting RNAs, etc., are not translated into proteins but act as essential epigenetic regulators in stem cells' self-renewal and differentiation. Different signaling pathways are monitored efficiently by the differential expression of ncRNAs, which function as regulatory elements in determining the fate of stem cells. In addition, several species of ncRNAs could serve as potential molecular biomarkers in early diagnosis of bone diseases, including osteoporosis, osteoarthritis, and bone cancers, ultimately leading to the development of new therapeutic strategies. This review aims to explore the specific roles of ncRNAs and their effective molecular mechanisms in the growth and development of stem cells, and in the regulation of osteoblast and osteoclast activities. Furthermore, we focus on and explore the association of altered ncRNA expression with stem cells and bone turnover.
Collapse
Affiliation(s)
- Anurag Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Satya Narayan Mishra
- Maa Gayatri College of Pharmacy, Dr. APJ Abdul Kalam Technical University, Prayagraj 211009, India
| | | | - Neeraj Kumar Tiwari
- Department of IT-Satellite Centre, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India
| | - Girish C Shukla
- Department of Biological, Geological, and Environmental Sciences, 2121 Euclid Ave., Cleveland, OH 44115, USA
- Center for Gene Regulation in Health and Disease, 2121 Euclid Ave., Cleveland, OH 44115, USA
| | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| |
Collapse
|
6
|
Bag S, Burman MD, Bhowmik S. Structural insights and shedding light on preferential interactions of dietary flavonoids with G-quadruplex DNA structures: A new horizon. Heliyon 2023; 9:e13959. [PMID: 36879969 PMCID: PMC9984854 DOI: 10.1016/j.heliyon.2023.e13959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
G-quadruplex, a structurally unique structure in nucleic acids present all throughout the human genome, has sparked great attention in therapeutic investigations. Targeting G-quadruplex structure is a new strategy for the drug development. Flavonoids are found in almost all dietary plant-based beverages and food products; therefore, they are ingested in significant proportions through the human diet. Although synthetically developed drug molecules are used vigorously but they have various adverse effects. While on the other hand, nature supplies chemically unique scaffolds in the form of distinct dietary flavonoids that are easily accessible, less poisonous, and have higher bioavailability. Because of their great pharmacological effectiveness and minimal cytotoxicity, such low molecular weight compounds are feasible alternatives to synthetic therapeutic medicines. Therefore, from a drug-development point of view, investigation on screening the binding capabilities of quadruplex-interactive small natural compounds like dietary flavonoids are expected to be highly effective, with a particular emphasis on the selectivity towards polymorphic G-quadruplex structures. In this respect, quadruplexes have scintillated research into their potential interaction with these dietary flavonoids. The purpose of this review is to offer an up-to-date close-up look at the research on their interaction with structurally varied dietary flavonoids with the goal of providing newer perspectives to construct novel therapeutic agents for next-generation disease managements.
Collapse
Affiliation(s)
- Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Mangal Deep Burman
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
| | - Sudipta Bhowmik
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata, 700009, India
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to Be University), Pondy-Cuddalore Main Road, Pillayarkuppam, Pondicherry, 607402, India
| |
Collapse
|
7
|
Host tRNA-Derived RNAs Target the 3'Untranslated Region of SARS-CoV-2. Pathogens 2022; 11:pathogens11121479. [PMID: 36558813 PMCID: PMC9786188 DOI: 10.3390/pathogens11121479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic revealed a need for new understanding of the mechanisms regulating host-pathogen interactions during viral infection. Transfer RNA-derived RNAs (tDRs), previously called transfer RNA fragments (tRFs), have recently emerged as potential regulators of viral pathogenesis. Many predictive studies using bioinformatic approaches have been conducted providing a repertoire of potential small RNA candidates for further analyses; however, few targets have been validated to directly bind to SARS-CoV-2 sequences. In this study, we used available data sets to identify host tDR expression altered in response to SARS-CoV-2 infection. RNA-interaction-prediction tools were used to identify sequences in the SARS-CoV-2 genome where tDRs could potentially bind. We then developed luciferase assays to confirm direct regulation through a predicted region of SARS-CoV-2 by tDRs. We found that two tDRs were downregulated in both clinical and in vitro cell culture studies of SARS-CoV-2 infection. Binding sites for these two tDRs were present in the 3' untranslated region (3'UTR) of the SARS-CoV-2 reference virus and both sites were altered in Variants of Concern (VOCs) that emerged later in the pandemic. These studies directly confirm the binding of human tDRs to a specific region of the 3'UTR of SARS-CoV-2 providing evidence for a novel mechanism for host-pathogen regulation.
Collapse
|
8
|
Scholz J, Weil PP, Pembaur D, Koukou G, Aydin M, Hauert D, Postberg J, Kreppel F, Hagedorn C. An Adenoviral Vector as a Versatile Tool for Delivery and Expression of miRNAs. Viruses 2022; 14:1952. [PMID: 36146759 PMCID: PMC9504453 DOI: 10.3390/v14091952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Only two decades after discovering miRNAs, our understanding of the functional effects of deregulated miRNAs in the development of diseases, particularly cancer, has been rapidly evolving. These observations and functional studies provide the basis for developing miRNA-based diagnostic markers or new therapeutic strategies. Adenoviral (Ad) vectors belong to the most frequently used vector types in gene therapy and are suitable for strong short-term transgene expression in a variety of cells. Here, we report the set-up and functionality of an Ad-based miRNA vector platform that can be employed to deliver and express a high level of miRNAs efficiently. This vector platform allows fast and efficient vector production to high titers and the expression of pri-miRNA precursors under the control of a polymerase II promoter. In contrast to non-viral miRNA delivery systems, this Ad-based miRNA vector platform allows accurate dosing of the delivered miRNAs. Using a two-vector model, we showed that Ad-driven miRNA expression was sufficient in down-regulating the expression of an overexpressed and highly stable protein. Additional data corroborated the downregulation of multiple endogenous target RNAs using the system presented here. Additionally, we report some unanticipated synergistic effects on the transduction efficiencies in vitro when cells were consecutively transduced with two different Ad-vectors. This effect might be taken into consideration for protocols using two or more different Ad vectors simultaneously.
Collapse
Affiliation(s)
- Jonas Scholz
- Chair for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Patrick Philipp Weil
- Centre for Biomedical Education & Research (ZBAF), Clinical Molecular Genetics and Epigenetics, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany
| | - Daniel Pembaur
- Chair for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Georgia Koukou
- Chair for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58448 Witten, Germany
| | - Dorota Hauert
- Chair for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Jan Postberg
- Centre for Biomedical Education & Research (ZBAF), Clinical Molecular Genetics and Epigenetics, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany
| | - Florian Kreppel
- Chair for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Claudia Hagedorn
- Chair for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| |
Collapse
|