1
|
Zhang X, Cong L, Yu R, Yu Q, Hou X, Zhou Y. MicroRNA‑96 promotes the proliferation and migration of breast cancer cells by inhibiting Smad7 expression. Oncol Lett 2025; 29:151. [PMID: 39898288 PMCID: PMC11783994 DOI: 10.3892/ol.2025.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 10/26/2023] [Indexed: 02/04/2025] Open
Abstract
The present study aimed to investigate the effects of microRNA (miR)-96 on the proliferation and migration of breast cancer cells, and indicated that miR-96 may have a promoting role in breast cancer by inhibiting Smad7. Reverse transcription-quantitative (RT-q)PCR was used to detect the expression levels of miR-96 and Smad7 in breast cancer tissues and adjacent tissues. Western blotting and immunohistochemistry were conducted to determine the expression levels of SMAD7 in breast cancer and adjacent tissues. A dual luciferase assay was performed to verify the targeted binding between miR-96 and Smad7. Furthermore, the different expression patterns of miR-96 and Smad7 were compared in various breast cancer cell lines using RT-qPCR and western blotting. Among these cell lines, MDA-MB-231, which exhibited the highest expression of miR-96, was chosen for subsequent functional verification. The expression levels of miR-96 were significantly higher in breast cancer tissues compared with those in adjacent tissues. By contrast, the expression levels of Smad7 were significantly lower in breast cancer tissues compared with those in adjacent tissues. The dual luciferase assay revealed a targeted binding effect between miR-96 and Smad7. Notably, transfection with miR-96-5p mimics and short hairpin RNA-Smad7 markedly promoted the proliferation, adhesion, invasion and migration of breast cancer cells. Conversely, transfection with a miR-96-5p inhibitor and Smad7 overexpression plasmid exhibited the opposite trend. In conclusion, the expression levels of miR-96 were significantly elevated in breast cancer tissues compared with those in adjacent tissues. Overexpression of miR-96 was shown to promote the migration of breast cancer cells by downregulating the expression of Smad7. These findings indicated that miR-96 may serve as a prognostic marker for breast cancer.
Collapse
Affiliation(s)
- Xiumei Zhang
- Department of Pathology, The People's Hospital of Xinghua City, Xinghua, Jiangsu 225700, P.R. China
| | - Lin Cong
- Department of Pathology, The People's Hospital of Xinghua City, Xinghua, Jiangsu 225700, P.R. China
| | - Rong Yu
- Department of Gastrointestinal Surgery, The People's Hospital of Xinghua City, Xinghua, Jiangsu 225700, P.R. China
| | - Qianwen Yu
- Department of Pathology, The People's Hospital of Xinghua City, Xinghua, Jiangsu 225700, P.R. China
| | - Xian Hou
- Department of Radiology, The People's Hospital of Xinghua City, Xinghua, Jiangsu 225700, P.R. China
| | - Yonghua Zhou
- Department of Breast Surgery, The People's Hospital of Xinghua City, Xinghua, Jiangsu 225700, P.R. China
| |
Collapse
|
2
|
Huang Q, Qiu T, Chen H, Tian T, Wang D, Lu C. Silencing LncRNA SNHG14 alleviates renal tubular injury via the miR-483-5p/HDAC4 axis in diabetic kidney disease. Hormones (Athens) 2025; 24:123-135. [PMID: 39375302 DOI: 10.1007/s42000-024-00606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 09/18/2024] [Indexed: 10/09/2024]
Abstract
PURPOSE This study explored the clinical value of long non-coding RNA small nucleolar RNA host gene 14 (SNHG14) in diabetic kidney disease (DKD) and the mechanism of renal tubular injury. METHODS Patients with DKD, type 2 diabetes mellitus (T2DM) and healthy individuals (HVs) were included, as well as the human proximal tubular epithelial cell line (HK-2) induced by high glucose was also included. The mRNA levels of SNHG14 in the serum and cells were detected using RT-qPCR. Diagnostic significance was examined using receiver operating characteristic (ROC) analysis. A commercial test kit, flow cytometry, and enzyme-linked immunosorbent assays were employed to assess reactive oxygen species (ROS) production, apoptosis, inflammatory factor secretion, and extracellular matrix protein levels in HK-2 cells. The dual-luciferase reporter assay and RNA immunoprecipitation were used to validate miR-483-5p concerning SNHG14 or histone deacetylase 4 (HDAC4). RESULTS SNHG14 and HDAC4 levels were elevated in the serum of DKD patients and HG-induced HK-2 cells, while miR-483-5p levels were decreased (P < 0.001). SNHG14 increased HDAC4 levels by sponging miR-483-5p. Elevated SNHG14 levels significantly differentiated DKD patients from HVs (AUC = 0.944) and T2DM (AUC = 0.867). Silencing of SNHG14 alleviated HG-induced ROS production and apoptosis as well as the over-secretion of inflammatory factors and extracellular matrix proteins; however, this alleviation was typically suppressed by low expression of miR-483-5p (P < 0.001). Elevated miR-483-5p alleviates HG-induced renal tubular injury, but this alleviation is suppressed by HDAC4 overexpression. CONCLUSION In summary, suppression of SNHG14 has been shown in our study to mitigate renal tubular injury in DKD by regulating apoptosis, oxidative stress, inflammation, and fibrosis through the miR-483-5p/HDAC4 axis.
Collapse
Affiliation(s)
- Qiwu Huang
- Department of Nephrology, Gongan Hospital of Traditional Chinese Medicine, Hubei, 434300, China
| | - Tianyi Qiu
- Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, 201800, China
| | - Huanzhen Chen
- School of Medicine, Tongji University, No.500, Zhennan Road, Taopu Town, Shanghai, 200092, China.
- Department of Endocrinology and Metabolism, Shanghai Jiangong Hospital, No.666 Zhongshan North Road, Hongkou District, Shanghai, 200083, China.
| | - Tongguan Tian
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Dan Wang
- Department of Endocrinology and Metabolism, Shanghai Jiangong Hospital, No.666 Zhongshan North Road, Hongkou District, Shanghai, 200083, China
| | - Chang Lu
- Endocrinology Department, The First Affiliated Hospital of Guangzhou Medical University, No.151, Yanjiang West Road, Yuexiu District, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
3
|
Bai HY, Li TT, Sun LN, Zhang JH, Kang XH, Qu YQ. Development of a Novel Prognostic Model for Lung Adenocarcinoma Utilizing Pyroptosis-Associated LncRNAs. Anal Cell Pathol (Amst) 2025; 2025:4488139. [PMID: 39834603 PMCID: PMC11745560 DOI: 10.1155/ancp/4488139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 01/22/2025] Open
Abstract
Lung cancer is a highly prevalent and fatal cancer that seriously threatens the safety of people in various regions around the world. Difficulty in early diagnosis and strong drug resistance have always been difficulties in the treatment of lung cancer, so the prognosis of lung cancer has always been the focus of scientific researchers. This study used genotype-tissue expression (GTEx) and the cancer genome atlas (TCGA) databases to obtain 477 lung adenocarcinoma (LUAD) and 347 healthy individuals' samples as research subjects and divided LUAD patients into low-risk and high-risk groups based on prognostic risk scores. Differentially expressed gene (DEG) analysis was performed on 25 pyroptosis-related genes obtained from GeneCards and MSigDB databases in cancer tissues of LUAD patients and noncancerous tissues of healthy individuals, and seven genes were significantly different in cancer tissues and noncancerous tissues among them. Coexpression analysis and differential expression analysis of these genes and long noncoding RNAs (lncRNAs) found that three lncRNAs (AC012615.1, AC099850.3, and AO0001453.2) had significant differences in expression between cancer tissues and noncancerous tissues. We used Cox regression and the least absolute shrinkage sum selection operator (LASSO) regression to construct a prognostic model for LUAD patients with these three pyroptosis-related lncRNAs (pRLs) and analyzed the prognostic value of the pRLs model by the Likaplan-Meier curve and Cox regression. The results show that the risk prediction model has good prediction ability. In addition, we also studied the differences in tumor mutation burden (TMB), tumor immune dysfunction and rejection (TIDE), and immune microenvironment with pRLs risk scores in low-risk and high-risk groups. This study successfully established a LUAD prognostic model based on pRLs, which provides new insights into lncRNA-based LUAD diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Hong-Yan Bai
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Shandong University, Jinan, China
| | - Tian-Tian Li
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Shandong University, Jinan, China
| | - Li-Na Sun
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Shandong University, Jinan, China
| | - Jing-Hong Zhang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Shandong University, Jinan, China
| | - Xiu-He Kang
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Shandong University, Jinan, China
| | - Yi-Qing Qu
- Department of Pulmonary and Critical Care Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong Key Laboratory of Infectious Respiratory Diseases, Shandong University, Jinan, China
| |
Collapse
|
4
|
Alsaab HO, Alaqile AF, Alsaeedi RN, Alzahrani MS, Almutairy B. Long journey on the role of long non-coding RNA (lncRNA) in acute kidney injury (AKI). Pathol Res Pract 2024; 263:155591. [PMID: 39288476 DOI: 10.1016/j.prp.2024.155591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/01/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024]
Abstract
Acute kidney injury (AKI) has a high rate of morbidity, death, and medical expenses, making it a worldwide public health problem. There are still few viable treatment plans for AKI despite medical advancements. A subclass of non-coding RNAs with over 200 nucleotides in length, long non-coding RNAs (lncRNAs) have a wide range of biological roles. Lately, lncRNAs have become important mediators of AKI and prospective biomarkers. However, current studies show that, via constructing the lncRNA/microRNA/target gene regulatory axis, abnormal expression of lncRNAs has been connected to significant pathogenic processes associated with AKI, such as the inflammatory response, cell proliferation, and apoptosis. In order to compete with mRNAs for binding to the same miRNAs and affect the expression of transcripts targeted by miRNAs, lncRNAs may function as competing endogenous RNAs (ceRNAs). The most widely used approach for researching the biological roles of lncRNAs is the construction of ceRNA regulation networks. Our goal in this article is to deliver an updated review of lncRNAs in AKI and to provide more knowledge on their possible applications as therapeutic targets and AKI biomarkers.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Atheer F Alaqile
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Rahaf N Alsaeedi
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
5
|
Sang H, Li L, Zhao Q, Liu Y, Hu J, Niu P, Hao Z, Chai K. The regulatory process and practical significance of non-coding RNA in the dissemination of prostate cancer to the skeletal system. Front Oncol 2024; 14:1358422. [PMID: 38577343 PMCID: PMC10991771 DOI: 10.3389/fonc.2024.1358422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Prostate cancer is a major contributor to male cancer-related mortality globally. It has a particular affinity for the skeletal system with metastasis to bones seriously impacting prognosis. The identification of prostate cancer biomarkers can significantly enhance diagnosis and patient monitoring. Research has found that cancer and metastases exhibit abnormal expression of numerous non-coding RNA. Some of these RNA facilitate prostate cancer bone metastasis by activating downstream signaling pathways, while others inhibit this process. Elucidating the functional processes of non-coding RNA in prostate cancer bone metastasis will likely lead to innovative treatment strategies for this malignant condition. In this review, the mechanistic role of the various RNA in prostate cancer is examined. Our goal is to provide a new avenue of approach to the diagnosis and treatment of bone metastasis in this cancer.
Collapse
Affiliation(s)
- Hui Sang
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Luxi Li
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Qiang Zhao
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Yulin Liu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Jinbo Hu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Peng Niu
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Zhenming Hao
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| | - Keqiang Chai
- Department of Urology, The Third Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Baiyin, China
| |
Collapse
|
6
|
Lv H, Qian X, Tao Z, Shu J, Shi D, Yu J, Fan G, Qian Q, Shen L, Lu B. HOXA5-induced lncRNA DNM3OS promotes human embryo lung fibroblast fibrosis via recruiting EZH2 to epigenetically suppress TSC2 expression. J Thorac Dis 2024; 16:1234-1246. [PMID: 38505042 PMCID: PMC10944743 DOI: 10.21037/jtd-23-1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/01/2023] [Indexed: 03/21/2024]
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is an unrepairable disease that results in lung dysfunction and decreased quality of life. Prevention of pulmonary fibrosis is challenging, while its pathogenesis remains largely unknown. Herein, we investigated the effect and mechanism of long non-coding RNA (lncRNA) DNM3OS/Antisense RNA in the pathogenesis of pulmonary fibrosis. Methods EdU (5-ethynyl-2'-deoxyuridine) and wound healing assays were employed to evaluate the role of DNM3OS on cell proliferation and migration. Western blot detected the proteins expressions of alpha-smooth muscle actin (α-SMA), vimentin, and fibronectin. The interactions among genes were evaluated by RNA pull-down, luciferase reporter, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) and chromatin Isolation by RNA purification (ChIRP) assays. Results DNM3OS was upregulated by transforming growth factor beta 1 (TGF-β1) in a dose- and time-dependent manner. DNM3OS knockdown repressed the growth and migration of lung fibroblast, and fibrotic gene expression (CoL1α1, CoL3α1, α-SMA, vimentin, and fibronectin), while suppression of TSC2 accelerated the above process. DNM3OS recruited EZH2 to the promoter region of TSC2, increased the occupancy of EZH2 and H3K27me3, and thereby suppressed the expression of TSC2. HOXA5 promoted the transcription of DNM3OS. Conclusions HOXA5-induced DNM3OS promoted the proliferation, migration, and expression of fibrosis-related genes in human embryo lung fibroblast via recruiting EZH2 to epigenetically suppress the expression of TSC2.
Collapse
Affiliation(s)
- Hong Lv
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Xingjia Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Zhengzheng Tao
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Jun Shu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Dongfang Shi
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Jing Yu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Guiqin Fan
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Qiuhong Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Luhong Shen
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| | - Bing Lu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Affiliated to Nanjing University of Chinese Medicine, Taicang, China
| |
Collapse
|
7
|
Tang PC, Chan MK, Chung JY, Chan AS, Zhang D, Li C, Leung K, Ng CS, Wu Y, To K, Lan H, Tang PM. Hematopoietic Transcription Factor RUNX1 is Essential for Promoting Macrophage-Myofibroblast Transition in Non-Small-Cell Lung Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302203. [PMID: 37967345 PMCID: PMC10767400 DOI: 10.1002/advs.202302203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/06/2023] [Indexed: 11/17/2023]
Abstract
Macrophage-myofibroblast transition (MMT) is a newly discovered pathway for mass production of pro-tumoral cancer-associated fibroblasts (CAFs) in non-small cell lung carcinoma (NSCLC) in a TGF-β1/Smad3 dependent manner. Better understanding its regulatory signaling in tumor microenvironment (TME) may identify druggable target for the development of precision medicine. Here, by dissecting the transcriptome dynamics of tumor-associated macrophage at single-cell resolution, a crucial role of a hematopoietic transcription factor Runx1 in MMT formation is revealed. Surprisingly, integrative bioinformatic analysis uncovers Runx1 as a key regulator in the downstream of MMT-specific TGF-β1/Smad3 signaling. Stromal Runx1 level positively correlates with the MMT-derived CAF abundance and mortality in NSCLC patients. Mechanistically, macrophage-specific Runx1 promotes the transcription of genes related to CAF signatures in MMT cells at genomic level. Importantly, macrophage-specific genetic deletion and systemic pharmacological inhibition of TGF-β1/Smad3/Runx1 signaling effectively prevent MMT-driven CAF and tumor formation in vitro and in vivo, representing a potential therapeutic target for clinical NSCLC.
Collapse
Affiliation(s)
- Philip Chiu‐Tsun Tang
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongShatin999077Hong Kong
| | - Max Kam‐Kwan Chan
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongShatin999077Hong Kong
| | - Jeff Yat‐Fai Chung
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongShatin999077Hong Kong
| | - Alex Siu‐Wing Chan
- Department of Applied Social SciencesThe Hong Kong Polytechnic UniversityHunghom999077Hong Kong
| | - Dongmei Zhang
- College of PharmacyJinan UniversityGuangzhou510632China
| | - Chunjie Li
- Department of Head and Neck OncologyWest China Hospital of StomatologySichuan UniversityChengduSichuan610041China
| | - Kam‐Tong Leung
- Department of PaediatricsThe Chinese University of Hong KongShatin999077Hong Kong
| | - Calvin Sze‐Hang Ng
- Department of SurgeryThe Chinese University of Hong KongShatin999077Hong Kong
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to DiseasesSchool of Basic Medical SciencesXi'an Jiaotong UniversityXi'an710061China
| | - Ka‐Fai To
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongShatin999077Hong Kong
| | - Hui‐Yao Lan
- Department of Medicine and TherapeuticsLi Ka Shing Institute of Health SciencesThe Chinese University of Hong KongShatin999077Hong Kong
| | - Patrick Ming‐Kuen Tang
- Department of Anatomical and Cellular PathologyState Key Laboratory of Translational OncologyThe Chinese University of Hong KongShatin999077Hong Kong
| |
Collapse
|
8
|
Ji ZZ, Chan MKK, Chan ASW, Leung KT, Jiang X, To KF, Wu Y, Tang PMK. Tumour-associated macrophages: versatile players in the tumour microenvironment. Front Cell Dev Biol 2023; 11:1261749. [PMID: 37965573 PMCID: PMC10641386 DOI: 10.3389/fcell.2023.1261749] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023] Open
Abstract
Tumour-Associated Macrophages (TAMs) are one of the pivotal components of the tumour microenvironment. Their roles in the cancer immunity are complicated, both pro-tumour and anti-cancer activities are reported, including not only angiogenesis, extracellular matrix remodeling, immunosuppression, drug resistance but also phagocytosis and tumour regression. Interestingly, TAMs are highly dynamic and versatile in solid tumours. They show anti-cancer or pro-tumour activities, and interplay between the tumour microenvironment and cancer stem cells and under specific conditions. In addition to the classic M1/M2 phenotypes, a number of novel dedifferentiation phenomena of TAMs are discovered due to the advanced single-cell technology, e.g., macrophage-myofibroblast transition (MMT) and macrophage-neuron transition (MNT). More importantly, emerging information demonstrated the potential of TAMs on cancer immunotherapy, suggesting by the therapeutic efficiency of the checkpoint inhibitors and chimeric antigen receptor engineered cells based on macrophages. Here, we summarized the latest discoveries of TAMs from basic and translational research and discussed their clinical relevance and therapeutic potential for solid cancers.
Collapse
Affiliation(s)
- Zoey Zeyuan Ji
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Max Kam-Kwan Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Alex Siu-Wing Chan
- Department of Applied Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Kam-Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xiaohua Jiang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ka-Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Patrick Ming-Kuen Tang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
9
|
Gélabert C, Papoutsoglou P, Golán I, Ahlström E, Ameur A, Heldin CH, Caja L, Moustakas A. The long non-coding RNA LINC00707 interacts with Smad proteins to regulate TGFβ signaling and cancer cell invasion. Cell Commun Signal 2023; 21:271. [PMID: 37784093 PMCID: PMC10544626 DOI: 10.1186/s12964-023-01273-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/13/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) regulate cellular processes by interacting with RNAs or proteins. Transforming growth factor β (TGFβ) signaling via Smad proteins regulates gene networks that control diverse biological processes, including cancer cell migration. LncRNAs have emerged as TGFβ targets, yet, their mechanism of action and biological role in cancer remain poorly understood. METHODS Whole-genome transcriptomics identified lncRNA genes regulated by TGFβ. Protein kinase inhibitors and RNA-silencing, in combination with cDNA cloning, provided loss- and gain-of-function analyses. Cancer cell-based assays coupled to RNA-immunoprecipitation, chromatin isolation by RNA purification and protein screening sought mechanistic evidence. Functional validation of TGFβ-regulated lncRNAs was based on new transcriptomics and by combining RNAscope with immunohistochemical analysis in tumor tissue. RESULTS Transcriptomics of TGFβ signaling responses revealed down-regulation of the predominantly cytoplasmic long intergenic non-protein coding RNA 707 (LINC00707). Expression of LINC00707 required Smad and mitogen-activated protein kinase inputs. By limiting the binding of Krüppel-like factor 6 to the LINC00707 promoter, TGFβ led to LINC00707 repression. Functionally, LINC00707 suppressed cancer cell invasion, as well as key fibrogenic and pro-mesenchymal responses to TGFβ, as also attested by RNA-sequencing analysis. LINC00707 also suppressed Smad-dependent signaling. Mechanistically, LINC00707 interacted with and retained Smad proteins in the cytoplasm. Upon TGFβ stimulation, LINC00707 dissociated from the Smad complex, which allowed Smad accumulation in the nucleus. In vivo, LINC00707 expression was negatively correlated with Smad2 activation in tumor tissues. CONCLUSIONS LINC00707 interacts with Smad proteins and limits the output of TGFβ signaling, which decreases LINC00707 expression, thus favoring cancer cell invasion. Video Abstract.
Collapse
Affiliation(s)
- Caroline Gélabert
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, Uppsala, SE-75123, Sweden
| | - Panagiotis Papoutsoglou
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, Uppsala, SE-75123, Sweden
- Inserm, Centre de Lutte contre le Cancer Eugène Marquis, Université Rennes 1, OSS (Oncogenesis, Stress, Signalling) laboratory, UMR_S 1242, Rennes, F-35042, France
| | - Irene Golán
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, Uppsala, SE-75123, Sweden
| | - Eric Ahlström
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, Uppsala, SE-75123, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, Uppsala, SE-75123, Sweden
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, Uppsala, SE-75123, Sweden.
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Biomedical Center, Uppsala University, Box 582, Uppsala, SE-75123, Sweden.
| |
Collapse
|
10
|
Shree B, Sharma V. Role of Non-Coding RNAs in TGF-β Signalling in Glioma. Brain Sci 2023; 13:1376. [PMID: 37891744 PMCID: PMC10605910 DOI: 10.3390/brainsci13101376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Brain tumours and Gliomas, in particular, are among the primary causes of cancer mortality worldwide. Glioma diagnosis and therapy have not significantly improved despite decades of efforts. Autocrine TGF-β signalling promotes glioma proliferation, invasion, epithelial-to-mesenchymal transition (EMT), and drug resistance. Non-coding RNAs such as miRNA, lncRNA, and circRNAs have emerged as critical transcriptional and post-transcriptional regulators of TGF-β pathway components in glioma. Here, we summarize the complex regulatory network among regulatory ncRNAs and TGF-β pathway during Glioma pathogenesis and discuss their role as potential therapeutic targets for Gliomas.
Collapse
Affiliation(s)
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, India;
| |
Collapse
|