1
|
De Paolis V, Paolillo N, Siri T, Grosso A, Lorello V, Spina C, Caporali G, La Regina F, Vignoli B, Giorgi C. An antisense-long-noncoding-RNA modulates p75 NTR expression levels during neuronal polarization. iScience 2025; 28:111566. [PMID: 39811648 PMCID: PMC11730960 DOI: 10.1016/j.isci.2024.111566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/05/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025] Open
Abstract
Proper polarization of newly generated neurons is a critical process for neural network formation and brain development. The pan-neurotrophin p75NTR receptor plays a key role in this process localizing asymmetrically in one of the differentiating neurites and specifying its axonal identity in response to neurotrophins. During axonal specification, p75NTR levels are transiently modulated, yet the molecular mechanisms underlying this process are not known. Here, we identified a previously uncharacterized natural antisense transcript, AS-p75, encoded within the p75NGFR mouse gene. Using an in vitro model of polarizing murine neurons, we found that AS-p75 and p75NTR display divergent expression profiles and that p75NTR expression levels increase upon competition or depletion of AS-p75, indicating that AS-p75 is a negative regulator of p75NTR expression. Depletion of AS-p75 also results in altered p75NTR subcellular distribution and affects the polarization process. Overall, our data uncovered AS-p75 as a modulator of p75NTR expression, offering new insights into the regulation of this neurotrophin receptor during in vitro neuronal polarization.
Collapse
Affiliation(s)
- Veronica De Paolis
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Biochemistry and Cell Biology, National Research Council of Italy (IBBC-CNR), Via Ercole Ramarini 32, 00015 Monterotondo, Italy
| | - Nicoletta Paolillo
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
| | - Tiziano Siri
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Sciences, University of Roma Tre, Viale Guglielmo Marconi 446, 00146 Rome, Italy
- CERVO Brain Research Center, Quebec City, QC G1J 2G3, Canada
| | - Alessandra Grosso
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Veronica Lorello
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Cristina Spina
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Gabriele Caporali
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Biology and Biotechnology “Charles Darwin”, University of Rome “Sapienza”, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
| | - Beatrice Vignoli
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Via Sommarive 9, 38123 Povo TN, Italy
| | - Corinna Giorgi
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Molecular Biology and Pathology, National Research Council of Italy (IBPM-CNR), P.le Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
2
|
Qu Y, Henderson KA, Harper TA, Vargas HM. Scientific Review of the Proarrhythmic Risks of Oligonucleotide Therapeutics: Are Dedicated ICH S7B/E14 Studies Needed for Low-Risk Modalities? Clin Pharmacol Ther 2024; 116:96-105. [PMID: 38362953 DOI: 10.1002/cpt.3204] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/25/2024] [Indexed: 02/17/2024]
Abstract
Oligonucleotide therapeutics (ONTs) represent a new modality with unique pharmacological and chemical properties that modulate gene expression with a high degree of target specificity mediated by complementary Watson-Crick base pair hybridization. To date, the proarrhythmic assessment of ONTs has been influenced by International Conference on Harmonization (ICH) E14 and S7B guidance. To document current hERG/QTc evaluation practices, we reviewed US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) Approval Packages (source: PharmaPendium.com) and collated preclinical and clinical studies for 17 marketed ONTs. In addition, clinical QTc data from 12 investigational ONTs were obtained from the literature. Of the marketed ONTs, eight were tested in the hERG assay with no inhibitory effect identified at the top concentration (range: 34-3,000 μM) tested. Fourteen of the ONTs were evaluated in nonhuman primate cardiovascular studies with 11 of them in dedicated telemetry studies. No effect on QTc intervals were observed (at high exposure multiples) in all studies. Clinically, four ONTs were evaluated in TQT studies; an additional six ONTs were assessed by concentration-QTc interval analysis, and six by routine safety electrocardiogram monitoring. None of the clinical studies identified a QTc prolongation risk; the same was true for the 12 investigational ONTs. A search of the FDA Adverse Event Database indicated no association between approved ONTs and proarrhythmias. Overall, the collective weight of evidence from 29 ONTs demonstrate no clinical proarrhythmic risk based on data obtained from ICH S7B/E14 studies. Thus, new ONTs may benefit from reduced testing strategies because they have no proarrhythmic risk, a similar cardiac safety profile as monoclonal antibodies, proteins, and peptides.
Collapse
Affiliation(s)
- Yusheng Qu
- Amgen Research, Translational Safety & Bioanalytical Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Kim A Henderson
- Amgen Research, Translational Safety & Bioanalytical Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Tod A Harper
- Amgen Research, Translational Safety & Bioanalytical Sciences, Amgen Inc., Thousand Oaks, California, USA
| | - Hugo M Vargas
- Amgen Research, Translational Safety & Bioanalytical Sciences, Amgen Inc., Thousand Oaks, California, USA
| |
Collapse
|
3
|
Giannakakis A, Tsifintaris M, Gouzouasis V, Ow GS, Aau MY, Papp C, Ivshina AV, Kuznetsov VA. KDM7A-DT induces genotoxic stress, tumorigenesis, and progression of p53 missense mutation-associated invasive breast cancer. Front Oncol 2024; 14:1227151. [PMID: 38756663 PMCID: PMC11097164 DOI: 10.3389/fonc.2024.1227151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Stress-induced promoter-associated and antisense lncRNAs (si-paancRNAs) originate from a reservoir of oxidative stress (OS)-specific promoters via RNAPII pausing-mediated divergent antisense transcription. Several studies have shown that the KDM7A divergent transcript gene (KDM7A-DT), which encodes a si-paancRNA, is overexpressed in some cancer types. However, the mechanisms of this overexpression and its corresponding roles in oncogenesis and cancer progression are poorly understood. We found that KDM7A-DT expression is correlated with highly aggressive cancer types and specific inherently determined subtypes (such as ductal invasive breast carcinoma (BRCA) basal subtype). Its regulation is determined by missense TP53 mutations in a subtype-specific context. KDM7A-DT transcribes several intermediate-sized ncRNAs and a full-length transcript, exhibiting distinct expression and localization patterns. Overexpression of KDM7A-DT upregulates TP53 protein expression and H2AX phosphorylation in nonmalignant fibroblasts, while in semi-transformed fibroblasts, OS superinduces KDM7A-DT expression in a TP53-dependent manner. KDM7A-DT knockdown and gene expression profiling in TP53-missense mutated luminal A BRCA variant, where it is abundantly expressed, indicate its significant role in cancer pathways. Endogenous over-expression of KDM7A-DT inhibits DNA damage response/repair (DDR/R) via the TP53BP1-mediated pathway, reducing apoptosis and promoting G2/M checkpoint arrest. Higher KDM7A-DT expression in BRCA is associated with KDM7A-DT locus gain/amplification, higher histologic grade, aneuploidy, hypoxia, immune modulation scores, and activation of the c-myc pathway. Higher KDM7A-DT expression is associated with relatively poor survival outcomes in patients with luminal A or Basal subtypes. In contrast, it is associated with favorable outcomes in patients with HER2+ER- or luminal B subtypes. KDM7A-DT levels are coregulated with critical transcripts and proteins aberrantly expressed in BRCA, including those involved in DNA repair via non-homologous end joining and epithelial-to-mesenchymal transition pathway. In summary, KDM7A-DT and its si-lncRNA exhibit several intrinsic biological and clinical characteristics that suggest important roles in invasive BRCA and its subtypes. KDM7A-DT-defined mRNA and protein subnetworks offer resources for identifying clinically relevant RNA-based signatures and prospective targets for therapeutic intervention.
Collapse
Affiliation(s)
- Antonis Giannakakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- University Research Institute for the Study of Genetic & Malignant Disorders in Childhood, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Tsifintaris
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Gouzouasis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Ghim Siong Ow
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mei Yee Aau
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Csaba Papp
- Department of Urology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Anna V. Ivshina
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Vladimir A. Kuznetsov
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Urology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
4
|
Pandini C, Pagani G, Tassinari M, Vitale E, Bezzecchi E, Saadeldin MK, Doldi V, Giannuzzi G, Mantovani R, Chiara M, Ciarrocchi A, Gandellini P. The pancancer overexpressed NFYC Antisense 1 controls cell cycle mitotic progression through in cis and in trans modes of action. Cell Death Dis 2024; 15:206. [PMID: 38467619 PMCID: PMC10928104 DOI: 10.1038/s41419-024-06576-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
Antisense RNAs (asRNAs) represent an underappreciated yet crucial layer of gene expression regulation. Generally thought to modulate their sense genes in cis through sequence complementarity or their act of transcription, asRNAs can also regulate different molecular targets in trans, in the nucleus or in the cytoplasm. Here, we performed an in-depth molecular characterization of NFYC Antisense 1 (NFYC-AS1), the asRNA transcribed head-to-head to NFYC subunit of the proliferation-associated NF-Y transcription factor. Our results show that NFYC-AS1 is a prevalently nuclear asRNA peaking early in the cell cycle. Comparative genomics suggests a narrow phylogenetic distribution, with a probable origin in the common ancestor of mammalian lineages. NFYC-AS1 is overexpressed pancancer, preferentially in association with RB1 mutations. Knockdown of NFYC-AS1 by antisense oligonucleotides impairs cell growth in lung squamous cell carcinoma and small cell lung cancer cells, a phenotype recapitulated by CRISPR/Cas9-deletion of its transcription start site. Surprisingly, expression of the sense gene is affected only when endogenous transcription of NFYC-AS1 is manipulated. This suggests that regulation of cell proliferation is at least in part independent of the in cis transcription-mediated effect on NFYC and is possibly exerted by RNA-dependent in trans effects converging on the regulation of G2/M cell cycle phase genes. Accordingly, NFYC-AS1-depleted cells are stuck in mitosis, indicating defects in mitotic progression. Overall, NFYC-AS1 emerged as a cell cycle-regulating asRNA with dual action, holding therapeutic potential in different cancer types, including the very aggressive RB1-mutated tumors.
Collapse
Affiliation(s)
- Cecilia Pandini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Giulia Pagani
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Martina Tassinari
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Emanuele Vitale
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Via Università 4, 41121, Modena, Italy
| | - Eugenia Bezzecchi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Mona Kamal Saadeldin
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
- Biology Department, School of Science and Engineering, The American University in Cairo, New Cairo, 11835, Egypt
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Valentina Doldi
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCSS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Giannuzzi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Roberto Mantovani
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Matteo Chiara
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Paolo Gandellini
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
5
|
Kucher AN, Koroleva IA, Nazarenko MS. Pathogenetic Significance of Long Non-Coding RNAs in the Development of Thoracic and Abdominal Aortic Aneurysms. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:130-147. [PMID: 38467550 DOI: 10.1134/s0006297924010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 03/13/2024]
Abstract
Aortic aneurysm (AA) is a life-threatening condition with a high prevalence and risk of severe complications. The aim of this review was to summarize the data on the role of long non-coding RNAs (lncRNAs) in the development of AAs of various location. Within less than a decade of studies on the role of lncRNAs in AA, using experimental and bioinformatic approaches, scientists have obtained the data confirming the involvement of these molecules in metabolic pathways and pathogenetic mechanisms critical for the aneurysm development. Regardless of the location of pathological process (thoracic or abdominal aorta), AA was found to be associated with changes in the expression of various lncRNAs in the tissue of the affected vessels. The consistency of changes in the expression level of lncRNA, mRNA and microRNA in aortic tissues during AA development has been recordedand regulatory networks implicated in the AA pathogenesis in which lncRNAs act as competing endogenous RNAs (ceRNA networks) have been identified. It was found that the same lncRNA can be involved in different ceRNA networks and regulate different biochemical and cellular events; on the other hand, the same pathological process can be controlled by different lncRNAs. Despite some similarities in pathogenesis and overlapping of involved lncRNAs, the ceRNA networks described for abdominal and thoracic AA are different. Interactions between lncRNAs and other molecules, including those participating in epigenetic processes, have also been identified as potentially relevant to the AA pathogenesis. The expression levels of some lncRNAs were found to correlate with clinically significant aortic features and biochemical parameters. Identification of regulatory RNAs functionally significant in the aneurysm development is important for clarification of disease pathogenesis and will provide a basis for early diagnostics and development of new preventive and therapeutic drugs.
Collapse
Affiliation(s)
- Aksana N Kucher
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Iuliia A Koroleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia
| | - Maria S Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russia.
| |
Collapse
|
6
|
Ali A, Khatoon A, Shao C, Murtaza B, Tanveer Q, Su Z. Therapeutic potential of natural antisense transcripts and various mechanisms involved for clinical applications and disease prevention. RNA Biol 2024; 21:1-18. [PMID: 38090817 PMCID: PMC10761088 DOI: 10.1080/15476286.2023.2293335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
Antisense transcription, a prevalent occurrence in mammalian genomes, gives rise to natural antisense transcripts (NATs) as RNA molecules. These NATs serve as agents of diverse transcriptional and post-transcriptional regulatory mechanisms, playing crucial roles in various biological processes vital for cell function and immune response. However, when their normal functions are disrupted, they can contribute to human diseases. This comprehensive review aims to establish the molecular foundation linking NATs to the development of disorders like cancer, neurodegenerative conditions, and cardiovascular ailments. Additionally, we evaluate the potential of oligonucleotide-based therapies targeting NATs, presenting both their advantages and limitations, while also highlighting the latest advancements in this promising realm of clinical investigation.Abbreviations: NATs- Natural antisense transcripts, PRC1- Polycomb Repressive Complex 1, PRC2- Polycomb Repressive Complex 2, ADARs- Adenosine deaminases acting on RNA, BDNF-AS- Brain-derived neurotrophic factor antisense transcript, ASOs- Antisense oligonucleotides, SINEUPs- Inverted SINEB2 sequence-mediated upregulating molecules, PTBP1- Polypyrimidine tract binding protein-1, HNRNPK- heterogeneous nuclear ribonucleoprotein K, MAPT-AS1- microtubule-associated protein tau antisense 1, KCNQ1OT- (KCNQ1 opposite strand/antisense transcript 1, ERK- extracellular signal-regulated kinase 1, USP14- ubiquitin-specific protease 14, EGF- Epidermal growth factor, LSD1- Lysine Specific Demethylase 1, ANRIL- Antisense Noncoding RNA in the INK4 Locus, BWS- Beckwith-Wiedemann syndrome, VEGFA- Vascular Endothelial Growth component A.
Collapse
Affiliation(s)
- Ashiq Ali
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Aisha Khatoon
- Department of Pathology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Chenran Shao
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Bilal Murtaza
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Qaisar Tanveer
- The Roslin Institute, The Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh, UK
| | - Zhongjing Su
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| |
Collapse
|
7
|
Pandini C, Rey F, Cereda C, Carelli S, Gandellini P. Study of lncRNAs in Pediatric Neurological Diseases: Methods, Analysis of the State-of-Art and Possible Therapeutic Implications. Pharmaceuticals (Basel) 2023; 16:1616. [PMID: 38004481 PMCID: PMC10675345 DOI: 10.3390/ph16111616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/06/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as crucial regulators in various cellular processes, and their roles in pediatric neurological diseases are increasingly being explored. This review provides an overview of lncRNA implications in the central nervous system, both in its physiological state and when a pathological condition is present. We describe the role of lncRNAs in neural development, highlighting their significance in processes such as neural stem cell proliferation, differentiation, and synaptogenesis. Dysregulation of specific lncRNAs is associated with multiple pediatric neurological diseases, such as neurodevelopmental or neurodegenerative disorders and brain tumors. The collected evidence indicates that there is a need for further research to uncover the full spectrum of lncRNA involvement in pediatric neurological diseases and brain tumors. While challenges exist, ongoing advancements in technology and our understanding of lncRNA biology offer hope for future breakthroughs in the field of pediatric neurology, leveraging lncRNAs as potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Cecilia Pandini
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Federica Rey
- Pediatric Clinical Research Center “Fondazione Romeo ed Enrica Invernizzi”, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (F.R.); (S.C.)
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, 20157 Milan, Italy;
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, 20157 Milan, Italy;
| | - Stephana Carelli
- Pediatric Clinical Research Center “Fondazione Romeo ed Enrica Invernizzi”, Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy; (F.R.); (S.C.)
- Center of Functional Genomics and Rare Diseases, Department of Pediatrics, Buzzi Children’s Hospital, 20157 Milan, Italy;
| | - Paolo Gandellini
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| |
Collapse
|
8
|
Sung WJ, Hong J. Targeting lncRNAs of colorectal cancers with natural products. Front Pharmacol 2023; 13:1050032. [PMID: 36699052 PMCID: PMC9868597 DOI: 10.3389/fphar.2022.1050032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Non-coding RNA (ncRNA) is one of the functional classes of RNA that has a regulatory role in various cellular processes, such as modulation of disease onset, progression, and prognosis. ncRNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), have been actively studied in recent years. The change in ncRNA levels is being actively studied in numerous human diseases, especially auto-immune disorders and cancers; however, targeting and regulating ncRNA with natural products to cure cancer has not been fully established. Recently many groups reported the relationship between ncRNA and natural products showing promising effects to serve as additional therapeutic approaches to cure cancers. This mini-review summarizes the aspects of lncRNAs related to cancer biology focusing on colorectal cancers that natural products can target.
Collapse
Affiliation(s)
- Woo Jung Sung
- Department of Pathology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Jaewoo Hong
- Department of Physiology, Daegu Catholic University School of Medicine, Daegu, South Korea,*Correspondence: Jaewoo Hong,
| |
Collapse
|