1
|
Matuskova H, Porschen LT, Matthes F, Lindgren AG, Petzold GC, Meissner A. Spatiotemporal sphingosine-1-phosphate receptor 3 expression within the cerebral vasculature after ischemic stroke. iScience 2024; 27:110031. [PMID: 38868192 PMCID: PMC11167442 DOI: 10.1016/j.isci.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/29/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Sphingosine-1-phosphate receptors (S1PRs) are promising therapeutic targets in cardiovascular disease, including ischemic stroke. However, important spatiotemporal information for alterations of S1PR expression is lacking. Here, we investigated the role of S1PR3 in ischemic stroke in rodent models and patient samples. We show that S1PR3 is acutely upregulated in perilesional reactive astrocytes after stroke, and that stroke volume and behavioral deficits are improved in mice lacking S1PR3. Further, we find that administration of an S1PR3 antagonist at 4-h post-stroke, but not at later timepoints, improves stroke outcome. Lastly, we observed higher plasma S1PR3 concentrations in experimental stroke and in patients with ischemic stroke. Together, our results establish S1PR3 as a potential drug target and biomarker in ischemic stroke.
Collapse
Affiliation(s)
- Hana Matuskova
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
- Division of Vascular Neurology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Lisa T. Porschen
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
- Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Frank Matthes
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
- Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Arne G. Lindgren
- Department of Clinical Sciences Lund, Neurology, Lund University, Lund, Sweden
- Department of Neurology, Rehabilitation Medicine, Memory Disorders and Geriatrics, Skåne University Hospital, Lund, Sweden
| | - Gabor C. Petzold
- Division of Vascular Neurology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Anja Meissner
- Department of Experimental Medical Sciences, Lund University, 221 84 Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, 221 84 Lund, Sweden
- German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
- Department of Physiology, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| |
Collapse
|
2
|
Arkelius K, Wendt TS, Andersson H, Arnou A, Gottschalk M, Gonzales RJ, Ansar S. LOX-1 and MMP-9 Inhibition Attenuates the Detrimental Effects of Delayed rt-PA Therapy and Improves Outcomes After Acute Ischemic Stroke. Circ Res 2024; 134:954-969. [PMID: 38501247 DOI: 10.1161/circresaha.123.323371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Acute ischemic stroke triggers endothelial activation that disrupts vascular integrity and increases hemorrhagic transformation leading to worsened stroke outcomes. rt-PA (recombinant tissue-type plasminogen activator) is an effective treatment; however, its use is limited due to a restricted time window and hemorrhagic transformation risk, which in part may involve activation of MMPs (matrix metalloproteinases) mediated through LOX-1 (lectin-like oxLDL [oxidized low-density lipoprotein] receptor 1). This study's overall aim was to evaluate the therapeutic potential of novel MMP-9 (matrix metalloproteinase 9) ± LOX-1 inhibitors in combination with rt-PA to improve stroke outcomes. METHODS A rat thromboembolic stroke model was utilized to investigate the impact of rt-PA delivered 4 hours poststroke onset as well as selective MMP-9 (JNJ0966) ±LOX-1 (BI-0115) inhibitors given before rt-PA administration. Infarct size, perfusion, and hemorrhagic transformation were evaluated by 9.4-T magnetic resonance imaging, vascular and parenchymal MMP-9 activity via zymography, and neurological function was assessed using sensorimotor function testing. Human brain microvascular endothelial cells were exposed to hypoxia plus glucose deprivation/reperfusion (hypoxia plus glucose deprivation 3 hours/R 24 hours) and treated with ±tPA and ±MMP-9 ±LOX-1 inhibitors. Barrier function was assessed via transendothelial electrical resistance, MMP-9 activity was determined with zymography, and LOX-1 and barrier gene expression/levels were measured using qRT-PCR (quantitative reverse transcription PCR) and Western blot. RESULTS Stroke and subsequent rt-PA treatment increased edema, hemorrhage, MMP-9 activity, LOX-1 expression, and worsened neurological outcomes. LOX-1 inhibition improved neurological function, reduced edema, and improved endothelial barrier integrity. Elevated MMP-9 activity correlated with increased edema, infarct volume, and decreased neurological function. MMP-9 inhibition reduced MMP-9 activity and LOX-1 expression. In human brain microvascular endothelial cells, LOX-1/MMP-9 inhibition differentially attenuated MMP-9 levels, inflammation, and activation following hypoxia plus glucose deprivation/R. CONCLUSIONS Our findings indicate that LOX-1 inhibition and ± MMP-9 inhibition attenuate negative aspects of ischemic stroke with rt-PA therapy, thus resulting in improved neurological function. While no synergistic effect was observed with simultaneous LOX-1 and MMP-9 inhibition, a distinct interaction is evident.
Collapse
Affiliation(s)
- Kajsa Arkelius
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| | - Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ (T.S.W., R.J.G.)
| | - Henrik Andersson
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| | - Anaële Arnou
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| | | | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ (T.S.W., R.J.G.)
| | - Saema Ansar
- Applied Neurovascular Research, Neurosurgery, Department of Clinical Sciences, Lund University, Sweden (K.A., H.A., A.A., S.A.)
| |
Collapse
|
3
|
Wang J, Fang CL, Noller K, Wei Z, Liu G, Shen K, Song K, Cao X, Wan M. Bone-derived PDGF-BB drives brain vascular calcification in male mice. J Clin Invest 2023; 133:e168447. [PMID: 37815871 PMCID: PMC10688993 DOI: 10.1172/jci168447] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Brain vascular calcification is a prevalent age-related condition often accompanying neurodegenerative and neuroinflammatory diseases. The pathogenesis of large-vessel calcifications in peripheral tissue is well studied, but microvascular calcification in the brain remains poorly understood. Here, we report that elevated platelet-derived growth factor BB (PDGF-BB) from bone preosteoclasts contributed to cerebrovascular calcification in male mice. Aged male mice had higher serum PDGF-BB levels and a higher incidence of brain calcification compared with young mice, mainly in the thalamus. Transgenic mice with preosteoclast-specific Pdgfb overexpression exhibited elevated serum PDGF-BB levels and recapitulated age-associated thalamic calcification. Conversely, mice with preosteoclast-specific Pdgfb deletion displayed diminished age-associated thalamic calcification. In an ex vivo cerebral microvascular culture system, PDGF-BB dose-dependently promoted vascular calcification. Analysis of osteogenic gene array and single-cell RNA-Seq (scRNA-Seq) revealed that PDGF-BB upregulated multiple osteogenic differentiation genes and the phosphate transporter Slc20a1 in cerebral microvessels. Mechanistically, PDGF-BB stimulated the phosphorylation of its receptor PDGFRβ (p-PDGFRβ) and ERK (p-ERK), leading to the activation of RUNX2. This activation, in turn, induced the transcription of osteoblast differentiation genes in PCs and upregulated Slc20a1 in astrocytes. Thus, bone-derived PDGF-BB induced brain vascular calcification by activating the p-PDGFRβ/p-ERK/RUNX2 signaling cascade in cerebrovascular cells.
Collapse
Affiliation(s)
- Jiekang Wang
- Department of Orthopaedic Surgery
- Department of Biomedical Engineering, and
| | | | | | - Zhiliang Wei
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Ke Shen
- Department of Orthopaedic Surgery
| | - Kangping Song
- Department of Orthopaedic Surgery
- Department of Biomedical Engineering, and
| | - Xu Cao
- Department of Orthopaedic Surgery
- Department of Biomedical Engineering, and
| | - Mei Wan
- Department of Orthopaedic Surgery
- Department of Biomedical Engineering, and
| |
Collapse
|
4
|
Matrongolo MJ, Ang PS, Wu J, Jain A, Thackray JK, Reddy A, Sung CC, Barbet G, Hong YK, Tischfield MA. Piezo1 agonist restores meningeal lymphatic vessels, drainage, and brain-CSF perfusion in craniosynostosis and aged mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559761. [PMID: 37808775 PMCID: PMC10557676 DOI: 10.1101/2023.09.27.559761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Skull development coincides with the onset of cerebrospinal fluid (CSF) circulation, brain-CSF perfusion, and meningeal lymphangiogenesis, processes essential for brain waste clearance. How these processes are affected by craniofacial disorders such as craniosynostosis are poorly understood. We report that raised intracranial pressure and diminished CSF flow in craniosynostosis mouse models associates with pathological changes to meningeal lymphatic vessels that affect their sprouting, expansion, and long-term maintenance. We also show that craniosynostosis affects CSF circulatory pathways and perfusion into the brain. Further, craniosynostosis exacerbates amyloid pathology and plaque buildup in Twist1 +/- :5xFAD transgenic Alzheimer's disease models. Treating craniosynostosis mice with Yoda1, a small molecule agonist for Piezo1, reduces intracranial pressure and improves CSF flow, in addition to restoring meningeal lymphangiogenesis, drainage to the deep cervical lymph nodes, and brain-CSF perfusion. Leveraging these findings, we show Yoda1 treatments in aged mice with reduced CSF flow and turnover improve lymphatic networks, drainage, and brain-CSF perfusion. Our results suggest CSF provides mechanical force to facilitate meningeal lymphatic growth and maintenance. Additionally, applying Yoda1 agonist in conditions with raised intracranial pressure and/or diminished CSF flow, as seen in craniosynostosis or with ageing, is a possible therapeutic option to help restore meningeal lymphatic networks and brain-CSF perfusion.
Collapse
|
5
|
Sadleir KR, Vassar R. Connections between ApoE, sleep, and Aβ and tau pathologies in Alzheimer's disease. J Clin Invest 2023; 133:e171838. [PMID: 37463448 PMCID: PMC10348763 DOI: 10.1172/jci171838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
In this issue of the JCI, Wang and colleagues investigate the relationship between sleep disturbances, an environmental risk factor for Alzheimer's disease (AD), and the apolipoprotein 4 (APOEε4) allele, a strong genetic risk factor for AD. The authors subjected an amyloid mouse model expressing human APOE3 or APOE4, with and without human AD-tau injection, to sleep deprivation and observed that amyloid and tau pathologies were worsened in the presence of APOE4. Moreover, decreased microglial clustering and increased dystrophic neurites around plaques were observed in sleep-deprived APOE4 mice. In addition, aquaporin 4, important for clearing amyloid-β through the glymphatic system, was reduced and less polarized to astrocytic endfeet. These APOE4-induced changes caused alterations in sleep behavior during recovery from sleep deprivation, suggesting a feed-forward cycle of sleep disturbance and increased AD pathology that can further disrupt sleep in the presence of APOE4.
Collapse
Affiliation(s)
| | - Robert Vassar
- Davee Department of Neurology and
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
6
|
Wang C, Nambiar A, Strickland MR, Lee C, Parhizkar S, Moore AC, Musiek ES, Ulrich JD, Holtzman DM. APOE-ε4 synergizes with sleep disruption to accelerate Aβ deposition and Aβ-associated tau seeding and spreading. J Clin Invest 2023; 133:e169131. [PMID: 37279069 PMCID: PMC10351966 DOI: 10.1172/jci169131] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/27/2023] [Indexed: 06/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. The APOE-ε4 allele of the apolipoprotein E (APOE) gene is the strongest genetic risk factor for late-onset AD. The APOE genotype modulates the effect of sleep disruption on AD risk, suggesting a possible link between apoE and sleep in AD pathogenesis, which is relatively unexplored. We hypothesized that apoE modifies Aβ deposition and Aβ plaque-associated tau seeding and spreading in the form of neuritic plaque-tau (NP-tau) pathology in response to chronic sleep deprivation (SD) in an apoE isoform-dependent fashion. To test this hypothesis, we used APPPS1 mice expressing human APOE-ε3 or -ε4 with or without AD-tau injection. We found that SD in APPPS1 mice significantly increased Aβ deposition and peri-plaque NP-tau pathology in the presence of APOE4 but not APOE3. SD in APPPS1 mice significantly decreased microglial clustering around plaques and aquaporin-4 (AQP4) polarization around blood vessels in the presence of APOE4 but not APOE3. We also found that sleep-deprived APPPS1:E4 mice injected with AD-tau had significantly altered sleep behaviors compared with APPPS1:E3 mice. These findings suggest that the APOE-ε4 genotype is a critical modifier in the development of AD pathology in response to SD.
Collapse
|
7
|
Oliveira DV, Coupland KG, Shao W, Jin S, Del Gaudio F, Wang S, Fox R, Rutten JW, Sandin J, Zetterberg H, Lundkvist J, Lesnik Oberstein SAJ, Lendahl U, Karlström H. Active immunotherapy reduces NOTCH3 deposition in brain capillaries in a CADASIL mouse model. EMBO Mol Med 2022; 15:e16556. [PMID: 36524456 PMCID: PMC9906330 DOI: 10.15252/emmm.202216556] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is the most common monogenic form of familial small vessel disease; no preventive or curative therapy is available. CADASIL is caused by mutations in the NOTCH3 gene, resulting in a mutated NOTCH3 receptor, with aggregation of the NOTCH3 extracellular domain (ECD) around vascular smooth muscle cells. In this study, we have developed a novel active immunization therapy specifically targeting CADASIL-like aggregated NOTCH3 ECD. Immunizing CADASIL TgN3R182C150 mice with aggregates composed of CADASIL-R133C mutated and wild-type EGF1-5 repeats for a total of 4 months resulted in a marked reduction (38-48%) in NOTCH3 deposition around brain capillaries, increased microglia activation and lowered serum levels of NOTCH3 ECD. Active immunization did not impact body weight, general behavior, the number and integrity of vascular smooth muscle cells in the retina, neuronal survival, or inflammation or the renal system, suggesting that the therapy is tolerable. This is the first therapeutic study reporting a successful reduction of NOTCH3 accumulation in a CADASIL mouse model supporting further development towards clinical application for the benefit of CADASIL patients.
Collapse
Affiliation(s)
- Daniel V Oliveira
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden,Department of Cell Biology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Kirsten G Coupland
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Wenchao Shao
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Shaobo Jin
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden,Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | | | - Sailan Wang
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| | - Rhys Fox
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden,Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Julie W Rutten
- Department of Clinical GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Johan Sandin
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden,Alzecure FoundationHuddingeSweden,Alzecure PharmaHuddingeSweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden,Department of Neurodegenerative DiseaseUCL Institute of Neurology, Queen SquareLondonUK,UK Dementia Research Institute at UCLLondonUK,Hong Kong Center for Neurodegenerative Diseases, Clear Water BayHong KongChina
| | - Johan Lundkvist
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden,Alzecure FoundationHuddingeSweden,Sinfonia BiotherapeuticsHuddingeSweden
| | | | - Urban Lendahl
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden,Department of Cell and Molecular BiologyKarolinska InstitutetStockholmSweden
| | - Helena Karlström
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
| |
Collapse
|
8
|
Wagner J, Degenhardt K, Veit M, Louros N, Konstantoulea K, Skodras A, Wild K, Liu P, Obermüller U, Bansal V, Dalmia A, Häsler LM, Lambert M, De Vleeschouwer M, Davies HA, Madine J, Kronenberg-Versteeg D, Feederle R, Del Turco D, Nilsson KPR, Lashley T, Deller T, Gearing M, Walker LC, Heutink P, Rousseau F, Schymkowitz J, Jucker M, Neher JJ. Medin co-aggregates with vascular amyloid-β in Alzheimer's disease. Nature 2022; 612:123-131. [PMID: 36385530 PMCID: PMC9712113 DOI: 10.1038/s41586-022-05440-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/12/2022] [Indexed: 11/17/2022]
Abstract
Aggregates of medin amyloid (a fragment of the protein MFG-E8, also known as lactadherin) are found in the vasculature of almost all humans over 50 years of age1,2, making it the most common amyloid currently known. We recently reported that medin also aggregates in blood vessels of ageing wild-type mice, causing cerebrovascular dysfunction3. Here we demonstrate in amyloid-β precursor protein (APP) transgenic mice and in patients with Alzheimer's disease that medin co-localizes with vascular amyloid-β deposits, and that in mice, medin deficiency reduces vascular amyloid-β deposition by half. Moreover, in both the mouse and human brain, MFG-E8 is highly enriched in the vasculature and both MFG-E8 and medin levels increase with the severity of vascular amyloid-β burden. Additionally, analysing data from 566 individuals in the ROSMAP cohort, we find that patients with Alzheimer's disease have higher MFGE8 expression levels, which are attributable to vascular cells and are associated with increased measures of cognitive decline, independent of plaque and tau pathology. Mechanistically, we demonstrate that medin interacts directly with amyloid-β to promote its aggregation, as medin forms heterologous fibrils with amyloid-β, affects amyloid-β fibril structure, and cross-seeds amyloid-β aggregation both in vitro and in vivo. Thus, medin could be a therapeutic target for prevention of vascular damage and cognitive decline resulting from amyloid-β deposition in the blood vessels of the brain.
Collapse
Affiliation(s)
- Jessica Wagner
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Karoline Degenhardt
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Marleen Veit
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nikolaos Louros
- grid.511015.1Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Katerina Konstantoulea
- grid.511015.1Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Angelos Skodras
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Katleen Wild
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ping Liu
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Germany
| | - Ulrike Obermüller
- grid.10392.390000 0001 2190 1447Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Vikas Bansal
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Anupriya Dalmia
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Lisa M. Häsler
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Marius Lambert
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Matthias De Vleeschouwer
- grid.511015.1Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Hannah A. Davies
- grid.10025.360000 0004 1936 8470Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK ,grid.10025.360000 0004 1936 8470Liverpool Centre for Cardiovascular Sciences, University of Liverpool, Liverpool, UK
| | - Jillian Madine
- grid.10025.360000 0004 1936 8470Liverpool Centre for Cardiovascular Sciences, University of Liverpool, Liverpool, UK ,grid.10025.360000 0004 1936 8470Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Deborah Kronenberg-Versteeg
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Regina Feederle
- grid.4567.00000 0004 0483 2525Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz Zentrum München, Research Center for Environmental Health, Neuherberg, Germany ,grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Domenico Del Turco
- grid.7839.50000 0004 1936 9721Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University, Frankfurt/Main, Germany
| | - K. Peter R. Nilsson
- grid.5640.70000 0001 2162 9922Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Tammaryn Lashley
- grid.83440.3b0000000121901201Queen Square Brain Bank for Neurological Disorders, University College London Queen Square Institute of Neurology, London, UK ,grid.83440.3b0000000121901201Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, UK
| | - Thomas Deller
- grid.7839.50000 0004 1936 9721Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Neuroscience Center, Goethe University, Frankfurt/Main, Germany
| | - Marla Gearing
- grid.189967.80000 0001 0941 6502Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, GA USA
| | - Lary C. Walker
- grid.189967.80000 0001 0941 6502Department of Neurology and Emory National Primate Research Center, Emory University, Atlanta, GA USA
| | - Peter Heutink
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Frederic Rousseau
- grid.511015.1Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Joost Schymkowitz
- grid.511015.1Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium ,grid.5596.f0000 0001 0668 7884Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Mathias Jucker
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Jonas J. Neher
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany ,grid.10392.390000 0001 2190 1447Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Hussain B, Fang C, Chang J. Blood-Brain Barrier Breakdown: An Emerging Biomarker of Cognitive Impairment in Normal Aging and Dementia. Front Neurosci 2021; 15:688090. [PMID: 34489623 PMCID: PMC8418300 DOI: 10.3389/fnins.2021.688090] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The blood–brain barrier (BBB) plays a vital role in maintaining the specialized microenvironment of the neural tissue. It separates the peripheral circulatory system from the brain parenchyma while facilitating communication. Alterations in the distinct physiological properties of the BBB lead to BBB breakdown associated with normal aging and various neurodegenerative diseases. In this review, we first briefly discuss the aging process, then review the phenotypes and mechanisms of BBB breakdown associated with normal aging that further cause neurodegeneration and cognitive impairments. We also summarize dementia such as Alzheimer's disease (AD) and vascular dementia (VaD) and subsequently discuss the phenotypes and mechanisms of BBB disruption in dementia correlated with cognition decline. Overlaps between AD and VaD are also discussed. Techniques that could identify biomarkers associated with BBB breakdown are briefly summarized. Finally, we concluded that BBB breakdown could be used as an emerging biomarker to assist to diagnose cognitive impairment associated with normal aging and dementia.
Collapse
Affiliation(s)
- Basharat Hussain
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Fang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|