1
|
Yuan C. Molecular mechanisms and therapeutic strategies of gut microbiota modulation in Sarcopenia (Review). Oncol Lett 2025; 29:104. [PMID: 39736924 PMCID: PMC11683524 DOI: 10.3892/ol.2024.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/20/2024] [Indexed: 01/01/2025] Open
Abstract
Sarcopenia is an age-related disease that is characterized by a decline in muscle mass and function with significant epidemiological and clinical implications. In recent years, gut microbiota has gained attention as an important regulatory factor in human health. To the best of our knowledge, this is the first study to introduce the definition and epidemiological background of sarcopenia and analyze the potential impact of the gut microbiota on muscle metabolism and growth, including aspects such as gut microbiota metabolites, muscle protein synthesis and energy metabolism. Additionally, this article summarizes the current research progress in gut microbiota interventions for the treatment of sarcopenia, such as probiotics, prebiotics and fecal microbiota transplantation and discusses future research directions and potential therapeutic strategies.
Collapse
Affiliation(s)
- Chanqi Yuan
- Department of Geriatrics, Harbin 242 Hospital, Harbin, Heilongjiang 150060, P.R. China
| |
Collapse
|
2
|
Stemmerik MG, Tasca G, Gilhus NE, Servais L, Vicino A, Maggi L, Sansone V, Vissing J. Biological biomarkers in muscle diseases relevant for follow-up and evaluation of treatment. Brain 2025; 148:363-375. [PMID: 39397743 DOI: 10.1093/brain/awae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/15/2024] [Accepted: 09/23/2024] [Indexed: 10/15/2024] Open
Abstract
Muscle diseases cover a diverse group of disorders that, in most cases, are hereditary. The rarity of the individual muscle diseases provides a challenge for researchers when wanting to establish natural history of the conditions and when trying to develop diagnostic tools, therapies, and outcome measures to evaluate disease progression. With emerging molecular therapies in many genetic muscle diseases, as well as biological therapies for the immune-mediated diseases, biological biomarkers play an important role in both drug development and evaluation. In this review, we focus on the role of biological biomarkers in muscle diseases and discuss their utility as surrogate end points in therapeutic trials. We categorize these as either (i) disease unspecific markers; (ii) markers of specific pathways that may be used for more than one disease; or (iii) disease-specific markers. We also propose that evaluation of specific therapeutic interventions benefits from biological markers that match the intervention.
Collapse
Affiliation(s)
- Mads G Stemmerik
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne NE1 3BZ, UK
| | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, 5007 Bergen, Norway
- Department of Neurology, Haukeland University Hospital, 5009 Bergen, Norway
| | - Laurent Servais
- Department of Paediatrics, MDUK Oxford Neuromuscular Centre and NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX1 3PT, UK
- Division of Child Neurology, Department of Pediatrics, Centre de Référence des Maladies Neuromusculaires, University Hospital Liège and University of Liège, 4000 Liège, Belgium
| | - Alex Vicino
- Nerve-Muscle Unit, Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, 1005 Lausanne, Switzerland
| | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan MI, Italy
| | - Valeria Sansone
- The NEMO Clinical Center in Milan, Neurorehabilitation Unit, University of Milan- ERN for Neuromuscular Diseases, 20162 Milan MI, Italy
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
3
|
Mirra D, Esposito R, Spaziano G, Rafaniello C, Panico F, Squillante A, Falciani M, Abrego-Guandique DM, Caiazzo E, Gallelli L, Cione E, D’Agostino B. miRNA Signatures in Alveolar Macrophages Related to Cigarette Smoke: Assessment and Bioinformatics Analysis. Int J Mol Sci 2025; 26:1277. [PMID: 39941045 PMCID: PMC11818525 DOI: 10.3390/ijms26031277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Cigarette smoke (CS) is a driver of many respiratory diseases, including chronic obstructive pulmonary disease (COPD) and non-small cell lung cancer (NSCLC). Tobacco causes oxidative stress, impaired phagocytosis of alveolar macrophages (AMs), and alterations in gene expression in the lungs of smokers. MicroRNAs (miRNAs) are small non-coding RNAs that influence several regulatory pathways. Previously, we monitored the expressions of hsa-miR-223-5p, 16-5p, 20a-5p, -17-5p, 34a-5p, and 106a-5p in AMs derived from the bronchoalveolar lavage (BAL) of subjects with NSCLC, COPD, and smoker and non-smoker control groups. Here, we investigated the capability of CS conditionate media to modulate the abovementioned miRNAs in primary AMs obtained in the same 43 sex-matched subjects. The expressions of has-miR-34a-5p, 17-5p, 16-5p, 106a-5p, 223-5p, and 20a-5p were assessed before and after in vitro CS exposure by RT-PCR. In addition, a comprehensive bioinformatic analysis of miRNAs KEGGS and PPI linked to inflammation was performed. Distinct and common miRNA expression profiles were identified in response to CS, suggesting their possible role in smoking-related diseases. It is worth noting that, following exposure to CS, the expression levels of hsa-miR-34a-5p and 17-5p in both smokers and non-smokers, 106a-5p in non-smokers, and 20a-5p in smokers, shifted towards those found in individuals with COPD, suggesting them as a risk factor in developing this lung condition. Moreover, CS-focused sub-analysis identified miRNA which exhibited CS-dependent pattern and modulated mRNA involved in the immune system or AMs property regulation. In conclusion, our study uncovered miRNA signatures in AMs exposed to CS, indicating that CS might modify epigenetic patterns that contribute to macrophage activation and lung disease onset and progression.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| | - Concetta Rafaniello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy;
- Section of Pharmacology “L. Donatelli”, Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesca Panico
- Science of Health Department, School of Medicine, University of Catanzaro, 88100 Catanzaro, Italy; (F.P.); (D.M.A.-G.)
| | | | - Maddalena Falciani
- Pulmonary and Critical Care Medicine, Ospedale Scarlato, 84018 Scafati, Italy;
| | | | - Eleonora Caiazzo
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| | - Luca Gallelli
- Clinical Pharmacology and Pharmacovigilance Unit, Department of Health Sciences, Mater Domini Hospital, University of “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (E.C.); (B.D.)
| |
Collapse
|
4
|
Tomasini S, Vigo P, Margiotta F, Scheele US, Panella R, Kauppinen S. The Role of microRNA-22 in Metabolism. Int J Mol Sci 2025; 26:782. [PMID: 39859495 PMCID: PMC11766054 DOI: 10.3390/ijms26020782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
microRNA-22 (miR-22) plays a pivotal role in the regulation of metabolic processes and has emerged as a therapeutic target in metabolic disorders, including obesity, type 2 diabetes, and metabolic-associated liver diseases. While miR-22 exhibits context-dependent effects, promoting or inhibiting metabolic pathways depending on tissue and condition, current research highlights its therapeutic potential, particularly through inhibition strategies using chemically modified antisense oligonucleotides. This review examines the dual regulatory functions of miR-22 across key metabolic pathways, offering perspectives on its integration into next-generation diagnostic and therapeutic approaches while acknowledging the complexities of its roles in metabolic homeostasis.
Collapse
Affiliation(s)
- Simone Tomasini
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| | - Paolo Vigo
- Resalis Therapeutics Srl, Via E. De Sonnaz 19, 10121 Torino, Italy
| | - Francesco Margiotta
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy;
| | - Ulrik Søberg Scheele
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| | - Riccardo Panella
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
- Resalis Therapeutics Srl, Via E. De Sonnaz 19, 10121 Torino, Italy
- Pharmacology and Toxicology Section, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale G. Pieraccini 6, 50139 Florence, Italy;
- European Biomedical Research Institute of Salerno (EBRIS), Via Salvatore de Renzi 50, 84125 Salerno, Italy
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark; (S.T.); (U.S.S.); (R.P.)
| |
Collapse
|
5
|
Wang T, Zhou D, Hong Z. Sarcopenia and cachexia: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2025; 6:e70030. [PMID: 39764565 PMCID: PMC11702502 DOI: 10.1002/mco2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 03/17/2025] Open
Abstract
Sarcopenia is defined as a muscle-wasting syndrome that occurs with accelerated aging, while cachexia is a severe wasting syndrome associated with conditions such as cancer and immunodeficiency disorders, which cannot be fully addressed through conventional nutritional supplementation. Sarcopenia can be considered a component of cachexia, with the bidirectional interplay between adipose tissue and skeletal muscle potentially serving as a molecular mechanism for both conditions. However, the underlying mechanisms differ. Recognizing the interplay and distinctions between these disorders is essential for advancing both basic and translational research in this area, enhancing diagnostic accuracy and ultimately achieving effective therapeutic solutions for affected patients. This review discusses the muscle microenvironment's changes contributing to these conditions, recent therapeutic approaches like lifestyle modifications, small molecules, and nutritional interventions, and emerging strategies such as gene editing, stem cell therapy, and gut microbiome modulation. We also address the challenges and opportunities of multimodal interventions, aiming to provide insights into the pathogenesis and molecular mechanisms of sarcopenia and cachexia, ultimately aiding in innovative strategy development and improved treatments.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| | - Zhen Hong
- Department of NeurologyWest China Hospital of Sichuan UniversityChengduSichuanChina
- Institute of Brain Science and Brain‐Inspired Technology of West China HospitalSichuan UniversityChengduSichuanChina
- Department of NeurologyChengdu Shangjin Nanfu HospitalChengduSichuanChina
| |
Collapse
|
6
|
Nunes-Pinto M, Bandeira de Mello RG, Pinto MN, Moro C, Vellas B, Martinez LO, Rolland Y, de Souto Barreto P. Sarcopenia and the biological determinants of aging: A narrative review from a geroscience perspective. Ageing Res Rev 2025; 103:102587. [PMID: 39571617 DOI: 10.1016/j.arr.2024.102587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND The physiopathology of sarcopenia shares common biological cascades with the aging process, as does any other age-related condition. However, our understanding of the interconnected pathways between diagnosed sarcopenia and aging remains limited, lacking sufficient scientific evidence. METHODS This narrative review aims to gather and describe the current evidence on the relationship between biological aging determinants, commonly referred to as the hallmarks of aging, and diagnosed sarcopenia in humans. RESULTS Among the twelve hallmarks of aging studied, there appears to be a substantial association between sarcopenia and mitochondrial dysfunction, epigenetic alterations, deregulated nutrient sensing, and altered intercellular communication. Although limited, preliminary evidence suggests a promising association between sarcopenia and genomic instability or stem cell exhaustion. DISCUSSION Overall, an imbalance in energy regulation, characterized by impaired mitochondrial energy production and alterations in circulatory markers, is commonly associated with sarcopenia and may reflect the interplay between aging physiology and sarcopenia biology.
Collapse
Affiliation(s)
- Mariá Nunes-Pinto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Renato Gorga Bandeira de Mello
- Postgraduate Program in Medical Sciences (Endocrinology), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Master of Public Health Program, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Milena Nunes Pinto
- School of Medicine, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cédric Moro
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France
| | - Bruno Vellas
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Laurent O Martinez
- Institut des Maladies Métaboliques et Cardiovasculaires, I2MC, Université de Toulouse, INSERM, Université Toulouse III - Paul Sabatier (UPS), Toulouse UMR1297, France; IHU HealthAge, Toulouse, France
| | - Yves Rolland
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| | - Philipe de Souto Barreto
- Gerontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France; CERPOP UMR 1295, University of Toulouse III, Institut National de la Santé et de la Recherche Médicale (Inserm), UPS, Toulouse, France; IHU HealthAge, Toulouse, France
| |
Collapse
|
7
|
Shin HE, Jang JY, Jung H, Won CW, Kim M. MicroRNAs as commonly expressed biomarkers for sarcopenia and frailty: A systematic review. Exp Gerontol 2024; 197:112600. [PMID: 39349187 DOI: 10.1016/j.exger.2024.112600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/03/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Coexistent sarcopenia and frailty is more strongly associated with adverse health outcomes than each condition alone. As the importance of coexistent sarcopenia and frailty increases, exploring their underlying mechanisms is warranted. Recently, noncoding ribonucleic acids (RNAs) have been suggested as potential biomarkers of sarcopenia and frailty. This systematic review aimed to summarize noncoding RNAs commonly expressed in sarcopenia and frailty, and to search the predicted target genes and biological pathways of them. METHODS We systematically searched the literatures on PubMed, Embase, Cochrane Library, Web of Science, and Scopus for literature published till November 15, 2023. A total of 7,202 literatures were initially retrieved. After de-duplication, 34 studies (26 sarcopenia-related and 8 frailty-related) were full-text reviewed, and 15 studies (11 sarcopenia-related and 4 frailty-related) were finally included. RESULTS miR-29a-3p, miR-29b-3p, and miR-328 were identified as commonly expressed in same direction in sarcopenia and frailty. These microRNAs (miRNAs), identified in the literature search using PubMed, modulate transforming growth factor-β signaling via extracellular matrix components and calcineurin/nuclear factor of activated T cells 3 signaling via sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a, which are involved in regulating skeletal muscle fibrosis and the growth of slow-twitch muscle fibers, respectively. miR-155-5p, miR-486, and miR-23a-3p were also commonly expressed in two conditions, although in different or conflicting directions. CONCLUSION In this systematic review, we highlight the potential of shared miRNAs that exhibit consistent expression patterns as biomarkers for the early diagnosis and progression assessment of both sarcopenia and frailty.
Collapse
Affiliation(s)
- Hyung Eun Shin
- Department of Orthopaedics, Emory Musculoskeletal Institute, Emory University School of Medicine, Atlanta, GA 30329, USA; Department of Health Sciences and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Young Jang
- Department of Biomedical Science and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Heeeun Jung
- KHU-KIST Department of Converging Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang Won Won
- Elderly Frailty Research Center, Department of Family Medicine, College of Medicine, Kyung Hee University, Kyung Hee University Medical Center, Seoul 02447, Republic of Korea
| | - Miji Kim
- Department of Health Sciences and Technology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
8
|
Chen G, Zou J, He Q, Xia S, Xiao Q, Du R, Zhou S, Zhang C, Wang N, Feng Y. The Role of Non-Coding RNAs in Regulating Cachexia Muscle Atrophy. Cells 2024; 13:1620. [PMID: 39404384 PMCID: PMC11482569 DOI: 10.3390/cells13191620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Cachexia is a late consequence of various diseases that is characterized by systemic muscle loss, with or without fat loss, leading to significant mortality. Multiple signaling pathways and molecules that increase catabolism, decrease anabolism, and interfere with muscle regeneration are activated. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), play vital roles in cachexia muscle atrophy. This review mainly provides the mechanisms of specific ncRNAs to regulate muscle loss during cachexia and discusses the role of ncRNAs in cachectic biomarkers and novel therapeutic strategies that could offer new insights for clinical practice.
Collapse
Affiliation(s)
- Guoming Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (G.C.); (C.Z.); (N.W.)
| | - Jiayi Zou
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.Z.); (Q.H.)
| | - Qianhua He
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (J.Z.); (Q.H.)
| | - Shuyi Xia
- Fifth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China;
| | - Qili Xiao
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Q.X.); (S.Z.)
| | - Ruoxi Du
- Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China;
| | - Shengmei Zhou
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; (Q.X.); (S.Z.)
| | - Cheng Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (G.C.); (C.Z.); (N.W.)
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (G.C.); (C.Z.); (N.W.)
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (G.C.); (C.Z.); (N.W.)
| |
Collapse
|
9
|
Jung W, Juang U, Gwon S, Nguyen H, Huang Q, Lee S, Lee B, Kim SH, Ryu S, Park J, Park J. Identifying the potential therapeutic effects of miR‑6516 on muscle disuse atrophy. Mol Med Rep 2024; 30:119. [PMID: 38757344 PMCID: PMC11129540 DOI: 10.3892/mmr.2024.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
Muscle atrophy is a debilitating condition with various causes; while aging is one of these causes, reduced engagement in routine muscle‑strengthening activities also markedly contributes to muscle loss. Although extensive research has been conducted on microRNAs (miRNAs/miRs) and their associations with muscle atrophy, the roles played by miRNA precursors remain underexplored. The present study detected the upregulation of the miR‑206 precursor in cell‑free (cf)RNA from the plasma of patients at risk of sarcopenia, and in cfRNAs from the muscles of mice subjected to muscle atrophy. Additionally, a decline in the levels of the miR‑6516 precursor was observed in mice with muscle atrophy. The administration of mimic‑miR‑6516 to mice immobilized due to injury inhibited muscle atrophy by targeting and inhibiting cyclin‑dependent kinase inhibitor 1b (Cdkn1b). Based on these results, the miR‑206 precursor appears to be a potential biomarker of muscle atrophy, whereas miR‑6516 shows promise as a therapeutic target to alleviate muscle deterioration in patients with muscle disuse and atrophy.
Collapse
Affiliation(s)
- Woohyeong Jung
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Uijin Juang
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Suhwan Gwon
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Hounggiang Nguyen
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Qingzhi Huang
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Soohyeon Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Beomwoo Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Seon-Hwan Kim
- Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Sunyoung Ryu
- Mitos Biomedical Institute, Mitos Therapeutics Inc., Daejeon 34134, Republic of Korea
| | - Jisoo Park
- Mitos Biomedical Institute, Mitos Therapeutics Inc., Daejeon 34134, Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Mitos Biomedical Institute, Mitos Therapeutics Inc., Daejeon 34134, Republic of Korea
| |
Collapse
|
10
|
Kiełbowski K, Bakinowska E, Procyk G, Ziętara M, Pawlik A. The Role of MicroRNA in the Pathogenesis of Duchenne Muscular Dystrophy. Int J Mol Sci 2024; 25:6108. [PMID: 38892293 PMCID: PMC11172814 DOI: 10.3390/ijms25116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked progressive disorder associated with muscle wasting and degeneration. The disease is caused by mutations in the gene that encodes dystrophin, a protein that links the cytoskeleton with cell membrane proteins. The current treatment methods aim to relieve the symptoms of the disease or partially rescue muscle functionality. However, they are insufficient to suppress disease progression. In recent years, studies have uncovered an important role for non-coding RNAs (ncRNAs) in regulating the progression of numerous diseases. ncRNAs, such as micro-RNAs (miRNAs), bind to their target messenger RNAs (mRNAs) to suppress translation. Understanding the mechanisms involving dysregulated miRNAs can improve diagnosis and suggest novel treatment methods for patients with DMD. This review presents the available evidence on the role of altered expression of miRNAs in the pathogenesis of DMD. We discuss the involvement of these molecules in the processes associated with muscle physiology and DMD-associated cardiomyopathy.
Collapse
Affiliation(s)
- Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.Z.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.Z.)
| | - Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Marta Ziętara
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.Z.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.K.); (E.B.); (M.Z.)
| |
Collapse
|
11
|
Mirra D, Esposito R, Spaziano G, Sportiello L, Panico F, Squillante A, Falciani M, Cerqua I, Gallelli L, Cione E, D’Agostino B. MicroRNA Monitoring in Human Alveolar Macrophages from Patients with Smoking-Related Lung Diseases: A Preliminary Study. Biomedicines 2024; 12:1050. [PMID: 38791013 PMCID: PMC11118114 DOI: 10.3390/biomedicines12051050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease that is commonly considered to be a potent driver of non-small cell lung cancer (NSCLC) development and related mortality. A growing body of evidence supports a role of the immune system, mainly played by alveolar macrophages (AMs), in key axes regulating the development of COPD or NSCLC phenotypes in response to harmful agents. MicroRNAs (miRNAs) are small non-coding RNAs that influence most biological processes and interfere with several regulatory pathways. The purpose of this study was to assess miRNA expression patterns in patients with COPD, NSCLC, and ever- or never-smoker controls to explore their involvement in smoking-related diseases. Bronchoalveolar lavage (BAL) specimens were collected from a prospective cohort of 43 sex-matched subjects to determine the expressions of hsa-miR-223-5p, 16-5p, 20a-5p, -17-5p, 34a-5p and 106a-5p by RT-PCR. In addition, a bioinformatic analysis of miRNA target genes linked to cancer was performed. Distinct and common miRNA expression levels were identified in each pathological group, suggesting their possible role as an index of NSCLC or COPD microenvironment. Moreover, we identified miRNA targets linked to carcinogenesis using in silico analysis. In conclusion, this study identified miRNA signatures in AMs, allowing us to understand the molecular mechanisms underlying smoking-related conditions and potentially providing new insights for diagnosis or pharmacological treatment.
Collapse
Affiliation(s)
- Davida Mirra
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| | - Renata Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| | - Giuseppe Spaziano
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| | - Liberata Sportiello
- Campania Regional Centre for Pharmacovigilance and Pharmacoepidemiology, 80138 Naples, Italy;
- Department of Experimental Medicine-Section of Pharmacology “L. Donatelli”, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Francesca Panico
- Department of Health Sciences, University of “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (L.G.)
| | | | - Maddalena Falciani
- Pulmonary and Critical Care Medicine, Ospedale Scarlato, 84018 Scafati, Italy;
| | - Ida Cerqua
- Department of Pharmacy, University Federico II of Naples, Via D. Montesano 49, 80131 Naples, Italy;
| | - Luca Gallelli
- Department of Health Sciences, University of “Magna Graecia”, 88100 Catanzaro, Italy; (F.P.); (L.G.)
| | - Erika Cione
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Bruno D’Agostino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (D.M.); (R.E.); (B.D.)
| |
Collapse
|
12
|
Nie L, Yang Q, Song Q, Zhou Y, Zheng W, Xu Q. Sarcopenia in peripheral arterial disease: Establishing and validating a predictive nomogram based on clinical and computed tomography angiography indicators. Heliyon 2024; 10:e28732. [PMID: 38590906 PMCID: PMC10999995 DOI: 10.1016/j.heliyon.2024.e28732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024] Open
Abstract
Purpose To establish, validate, and clinically evaluate a nomogram for predicting the risk of sarcopenia in patients with peripheral arterial disease (PAD) based on clinical and lower extremity computed tomography angiography (LE-CTA) imaging characteristics. Methods Clinical data and CTA imaging features from 281 PAD patients treated between January 1, 2019, and May 1, 2023, at two hospitals were retrospectively analyzed using binary logistic regression to identify the independent risk factors for sarcopenia. These identified risk factors were used to develop a predictive nomogram. The nomogram's effectiveness was assessed through various metrics, including the receiver operating characteristic (ROC) curve, area under the curve (AUC), concordance index (C-index), Hosmer-Lemeshow (HL) test, and calibration curve. Its clinical utility was demonstrated using decision curve analysis (DCA). Results Several key independent risk factors for sarcopenia in PAD patients were identified, namely age, body mass index (BMI), history of coronary heart disease (CHD), and white blood cell (WBC) count, as well as the severity of luminal stenosis (P < 0.05). The discriminative ability of the nomogram was supported by the C-index and an AUC of 0.810 (95% confidence interval: 0.757-0.862). A robust concordance between predicted and observed outcomes was reflected by the calibration curve. The HL test further affirmed the model's calibration with a P-value of 0.40. The DCA curve validated the nomogram's favorable clinical utility. Lastly, the model underwent internal validation. Conclusions A simple nomogram based on five independent factors, namely age, BMI, history of CHD, WBC count, and the severity of luminal stenosis, was developed to assist clinicians in estimating sarcopenia risk among PAD patients. This tool boasts impressive predictive capabilities and broad utility, significantly aiding clinicians in identifying high-risk individuals and enhancing the prognosis of PAD patients.
Collapse
Affiliation(s)
- Lu Nie
- Department of Intervention Vascular, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Qifan Yang
- Department of Gastroenterology, People's Hospital Affiliated with Jiangsu University, Zhenjiang, China
| | - Qian Song
- Department of Intervention Vascular, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Yu Zhou
- Department of Intervention Vascular, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Weimiao Zheng
- Department of Intervention Vascular, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Clinical College of Xuzhou Medical University, Changzhou, China
| | - Qiang Xu
- Department of Intervention Vascular, Wujin Hospital Affiliated with Jiangsu University, Changzhou, China
- Wujin Clinical College of Xuzhou Medical University, Changzhou, China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Changzhou, China
- Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou, China
| |
Collapse
|
13
|
Martinez Aguirre-Betolaza A, Cacicedo J, Castañeda-Babarro A. Creatine Supplementation and Resistance Training in Patients With Breast Cancer (CaRTiC Study): Protocol for a Randomized Controlled Trial. Am J Clin Oncol 2024; 47:161-168. [PMID: 38018533 DOI: 10.1097/coc.0000000000001070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
BACKGROUND Creatine supplementation is an effective ergogenic nutrient for athletes, as well as for people starting a health or fitness program. Resistance training has previously been identified as an important method of increasing muscle mass and strength, especially in people with cancer to avoid sarcopenia. The potential of creatine supplementation for adaptations produced by resistance training in patients with cancer is still unknown. The primary aim of this study is to evaluate the effectiveness of a supervised resistance training program intervention with and without creatine supplementation in patients with breast cancer. METHODS Is a multicentre, randomized, blind, placebo-controlled study. Patients will be randomly assigned to a control group and 2 experimental groups. The first training resistance group (RG) will perform resistance training, while the second experimental resistance-creatine group will perform the same resistance training as the RG and will also receive a 5 g/d creatine supplementation during the intervention. RG participants will follow the same daily dosing protocol, but in their case, with dextrose/maltodextrin. Resistance training will be a 16-week supervised workout that will consist of a series of resistance exercises (leg press, knee extension, knee bends, chest press, sit-ups, back extensions, pull-ups, and shoulder press) that involve the largest muscle groups, performed 3 times a week on nonconsecutive days. Both the RG and the resistance-creatine group will receive a supplement of soluble protein powder (20 to 30 g) daily. CONCLUSION This intervention will help to better understand the potential of nonpharmacological treatment for improving strength and well-being values in patients with breast cancer with and without creatine supplementation.
Collapse
Affiliation(s)
| | - Jon Cacicedo
- Department of Radiation Oncology, Group for Radiology and Physical Medicine in Oncology, Cruces University Hospital/Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Arkaitz Castañeda-Babarro
- Department of Physical Activity and Sport Sciences, Faculty of Education and Sport, University of Deusto, Bilbao, Spain
| |
Collapse
|
14
|
Millet M, Auroux M, Beaudart C, Demonceau C, Ladang A, Cavalier E, Reginster JY, Bruyère O, Chapurlat R, Rousseau JC. Association of circulating hsa-miRNAs with sarcopenia: the SarcoPhAge study. Aging Clin Exp Res 2024; 36:70. [PMID: 38485856 PMCID: PMC10940485 DOI: 10.1007/s40520-024-02711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/23/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE To identify a microRNA signature associated to sarcopenia in community-dwelling older adults form the SarcoPhAge cohort. METHODS In a screening phase by next generation sequencing (NGS), we compared the hsa-miRome expression of 18 subjects with sarcopenia (79.6 ± 6.8 years, 9 men) and 19 healthy subjects without sarcopenia (77.1 ± 6 years, 9 men) at baseline. Thereafter, we have selected eight candidate hsa-miRNAs according to the NGS results and after a critical assessment of previous literature. In a validation phase and by real-time qPCR, we then analyzed the expression levels of these 8 hsa-miRNAs at baseline selecting 92 healthy subjects (74.2 ± 10 years) and 92 subjects with sarcopenia (75.3 ± 6.8 years). For both steps, the groups were matched for age and sex. RESULTS In the validation phase, serum has-miRNA-133a-3p and has-miRNA-200a-3p were significantly decreased in the group with sarcopenia vs controls [RQ: relative quantification; median (interquartile range)]: -0.16 (-1.26/+0.90) vs +0.34 (-0.73/+1.33) (p < 0.01) and -0.26 (-1.07/+0.68) vs +0.27 (-0.55/+1.10) (p < 0.01) respectively. Has-miRNA-744-5p was decreased and has-miRNA-151a-3p was increased in the group with sarcopenia vs controls, but this barely reached significance: +0.16 (-1.34/+0.79) vs +0.44 (-0.31/+1.00) (p = 0.050) and +0.35 (-0.22/+0.90) vs +0.03 (-0.68/+0.75) (p = 0.054). CONCLUSION In subjects with sarcopenia, serum hsa-miRNA-133a-3p and hsa-miRNA-200a-3p expression were downregulated, consistent with their potential targets inhibiting muscle cells proliferation and differentiation.
Collapse
Affiliation(s)
| | - Maxime Auroux
- INSERM 1033, Lyon, France
- Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
| | - Charlotte Beaudart
- Clinical Pharmacology and Toxicology Research Unit (URPC), NARILIS, Department of Biomedical Sciences, Faculty of Medicine, University of Namur, Namur, Belgium
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Céline Demonceau
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Aurélie Ladang
- Department of Clinical Chemistry, CHU de Liège, University of Liège, Liege, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, CHU de Liège, University of Liège, Liege, Belgium
| | - Jean-Yves Reginster
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Olivier Bruyère
- WHO Collaborating Center for Epidemiology of Musculoskeletal Health and Aging, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liege, Belgium
| | - Roland Chapurlat
- INSERM 1033, Lyon, France
- PMO, Lyon, France
- Hôpital E. Herriot, Hospices Civils de Lyon, Lyon, France
- University of Lyon, Lyon, France
| | | |
Collapse
|
15
|
Abrego-Guandique DM, Bonet ML, Caroleo MC, Cannataro R, Tucci P, Ribot J, Cione E. The Effect of Beta-Carotene on Cognitive Function: A Systematic Review. Brain Sci 2023; 13:1468. [PMID: 37891835 PMCID: PMC10605009 DOI: 10.3390/brainsci13101468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
β-carotene is a powerful antioxidant and dietary precursor of vitamin A whose role in maintaining mental health and cognitive performance, either alone or in combination with other dietary compounds, has been a topic of recent research. However, its effectiveness is still unclear. This systematic review, conducted according to the PRISMA guideline and assisted by the MySLR platform, addressed this issue. A total of 16 eligible original research articles were identified. Dietary intake or β-carotene serum levels were associated with improved measures of cognitive function in 7 out of 10 epidemiological studies included. In intervention studies, β-carotene consumption alone did not promote better cognitive function in the short term, but only in a long-term intervention with a mean duration of 18 years. However, all but one intervention study suggested the beneficial effects of β-carotene supplementation at doses ranging from 6 mg to 50 mg per day in combination with a multicomplex such as vitamin E, vitamin C, zinc, or selenium for a period of 16 weeks to 20 years. Despite the current limitations, the available evidence suggests a potential association between β-carotene dietary/supplementary intake and the maintenance of cognitive function. The β-carotene most probably does not act alone but in synergy with other micronutrients.
Collapse
Affiliation(s)
- Diana Marisol Abrego-Guandique
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy; (D.M.A.-G.); (M.C.C.)
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
| | - Maria Luisa Bonet
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Universitat de les Illes Balears, 07122 Palma, Spain; (M.L.B.); (J.R.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07122 Palma, Spain
| | - Maria Cristina Caroleo
- Department of Health Sciences, University of Magna Graecia Catanzaro, 88100 Catanzaro, Italy; (D.M.A.-G.); (M.C.C.)
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
| | - Roberto Cannataro
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
- Research Division, Dynamical Business & Science Society, DBSS International SAS, Bogota 110311, Colombia
| | - Paola Tucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Joan Ribot
- Laboratory of Molecular Biology, Nutrition, and Biotechnology (LBNB), Universitat de les Illes Balears, 07122 Palma, Spain; (M.L.B.); (J.R.)
- Institut d’Investigació Sanitària Illes Balears (IdISBa), 07120 Palma, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBERobn), 07122 Palma, Spain
| | - Erika Cione
- Galascreen Laboratories, University of Calabria, 87036 Rende, Italy;
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
16
|
Ghafouri-Fard S, Askari A, Mahmud Hussen B, Taheri M, Kiani A. Sarcopenia and noncoding RNAs: A comprehensive review. J Cell Physiol 2023. [PMID: 37183312 DOI: 10.1002/jcp.31031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
Sarcopenia is an elderly disease and is related to frailty and loss of muscle mass (atrophy) of older adults. The exact molecular mechanisms contributing to the pathogenesis of disease are yet to be discovered. In recent years, the role of noncoding RNAs in the pathogenesis of almost every kind of malignant and nonmalignant conditions is pinpointed. Regarding their regulatory function, there have been an increased number of studies on the role of noncoding RNAs in the progress of sarcopenia. In this manuscript, we review the role of microRNAs and long noncoding RNAs in development and progression of disease. We also discuss their potential as therapeutic targets in this condition.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Askari
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Velasquez FC, Roman B, Hernández-Ochoa EO, Leppo MK, Truong SK, Steenbergen C, Schneider MF, Weiss RG, Das S. Contribution of skeletal muscle-specific microRNA-133b to insulin resistance in heart failure. Am J Physiol Heart Circ Physiol 2023; 324:H598-H609. [PMID: 36827227 PMCID: PMC10069972 DOI: 10.1152/ajpheart.00250.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Insulin resistance (IR) is one of the hallmarks of heart failure (HF). Abnormalities in skeletal muscle (SM) metabolism have been identified in patients with HF. However, the underlying mechanisms of IR development in SM in HF are poorly understood. Herein, we hypothesize that HF upregulates miR-133b in SM and in turn alters glucose metabolism and the propensity toward IR. Mitochondria isolated from SM of mice with HF induced by transverse aortic constriction (TAC) showed lower respiration and downregulation of muscle-specific components of the tricarboxylic acid (TCA) cycle, AMP deaminase 1 (AMPD1), and fumarate compared with those from control animals. RNA-Seq and subsequent qPCR validation confirmed upregulation of SM-specific microRNA (miRNA), miR-133b, in TAC versus sham animals. miR-133b overexpression alone resulted in significantly lower mitochondrial respiration, cellular glucose uptake, and glycolysis along with lower ATP production and cellular energy reserve compared with the scramble (Scr) in C2C12 cells. miR-133b binds to the 3'-untranslated region (UTR) of KLF15, the transcription factor for the insulin-sensitive glucose transporter, GLUT4. Overexpression of miR-133b lowers GLUT4 and lowers pAkt in presence of insulin in C2C12 cells. Finally, lowering miR-133b in primary skeletal myocytes isolated from TAC mice using antagomir-133b reversed the changes in KLF15, GLUT4, and AMPD1 compared with the scramble-transfected myocytes. Taken together, these data demonstrate a role for SM miR-133b in altered glucose metabolism in HF and suggest the therapeutic potential in HF to improve glucose uptake and glycolysis by restoring GLUT4 abundance. The data uncover a novel mechanism for IR and ultimately SM metabolic abnormalities in patients with HF.NEW & NOTEWORTHY Heart failure is associated with systemic insulin resistance and abnormalities in glucose metabolism but the underlying mechanisms are poorly understood. In the skeletal muscle, the major peripheral site of glucose utilization, we observe an increase in miR-133b in heart failure mice, which reduces the insulin-sensitive glucose transporter (GLUT4), glucose uptake, and metabolism in C2C12 and in myocytes. The antagomir for miR-133b restores GLUT4 protein and markers of metabolism in skeletal myocytes from heart failure mice demonstrating that miR-133b is an exciting target for systemic insulin resistance in heart failure and an important player in the cross talk between the heart and the periphery in the heart failure syndrome.
Collapse
Affiliation(s)
- Fernanda Carrizo Velasquez
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Barbara Roman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Michelle K Leppo
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Sharon K Truong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Robert G Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Samarjit Das
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
18
|
Biss S, Teschler M, Heimer M, Thum T, Bär C, Mooren FC, Schmitz B. A single session of EMS training induces long-lasting changes in circulating muscle but not cardiovascular miRNA levels: a randomized crossover study. J Appl Physiol (1985) 2023; 134:799-809. [PMID: 36759165 DOI: 10.1152/japplphysiol.00557.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Electromyostimulation (EMS) is used to maintain or build skeletal muscle and to increase cardiopulmonary fitness. Only limited data on the molecular mechanisms induced by EMS are available and effects on circulating microRNAs (c-miRNAs) have not been reported. This study aimed to evaluate whether EMS induces long-term changes in muscle- and cardiovascular-specific c-miRNA levels. Twelve healthy participants (33.0 ± 12.0 yr, 7 women) performed a 20-min whole body EMS training and a time- and intensity-matched whole body circuit training (CT) in random order. Blood samples were drawn pre-/posttraining and at 1.5, 3, 24, 48, and 72 h to determine creatine kinase (CK) and miRNA-21-5p, -126-3p, -133a-3p, -146a-5p, -206-3p, -222-3p, and -499a-5p levels. Muscular exertion was determined using an isometric strength test, and muscle soreness/pain was assessed by questionnaire. EMS participants reported higher muscle soreness 48 and 72 h postexercise and mean CK levels after EMS increased compared with CT at 48 and 72 h (time × group P ≤ 0.01). The EMS session induced a significant elevation of myomiR-206 and -133a levels starting at 1.5 and 3 h after exercise. Both miRNAs remained elevated for 72 h with significant differences between 24 and 72 h (time × group P ≤ 0.0254). EMS did not induce changes in cardiovascular miRNAs and no elevation in any miRNA was detected following CT. Time-course analysis of muscle damage marker CK and c-miR-133a and -206 levels did not suggest a common scheme (P ≥ 0.277). We conclude that a single EMS session induces specific long-lasting changes of miR-206 and miR-133 involved in muscle proliferation and differentiation. A single EMS session does not affect primary cardiovascular miRNA-21-5p, -126-3p, -146a-5p, and -222-3p levels.NEW & NOTEWORTHY Our study describes the long-term effects of electromyostimulation (EMS) on circulating miRNA levels. The observed increase of functional myomiR-206 and -133a levels over 72 h suggests long-lasting effects on muscle proliferation and differentiation, whereas cardiovascular miRNAs appear unaffected. Our findings suggest that circulating miRNAs provide useful insight into muscle regeneration processes after EMS and may thus be used to optimize EMS training effects.
Collapse
Affiliation(s)
- Sinje Biss
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
| | - Marc Teschler
- Faculty of Health, Department of Rehabilitation Sciences, University of Witten/Herdecke, Witten, Germany
- Center for Medical Rehabilitation, DRV Clinic Königsfeld, Ennepetal, Germany
| | - Melina Heimer
- Faculty of Health, Department of Rehabilitation Sciences, University of Witten/Herdecke, Witten, Germany
- Center for Medical Rehabilitation, DRV Clinic Königsfeld, Ennepetal, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - Frank C Mooren
- Faculty of Health, Department of Rehabilitation Sciences, University of Witten/Herdecke, Witten, Germany
- Center for Medical Rehabilitation, DRV Clinic Königsfeld, Ennepetal, Germany
| | - Boris Schmitz
- Faculty of Health, Department of Rehabilitation Sciences, University of Witten/Herdecke, Witten, Germany
- Center for Medical Rehabilitation, DRV Clinic Königsfeld, Ennepetal, Germany
| |
Collapse
|
19
|
Lung microRNAs Expression in Lung Cancer and COPD: A Preliminary Study. Biomedicines 2023; 11:biomedicines11030736. [PMID: 36979715 PMCID: PMC10045129 DOI: 10.3390/biomedicines11030736] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is one of the deadliest diseases worldwide and represents an impending burden on the healthcare system. Despite increasing attention, the mechanisms underlying tumorigenesis in cancer-related diseases such as COPD remain unclear, making novel biomarkers necessary to improve lung cancer early diagnosis. MicroRNAs (miRNAs) are short non-coding RNA that interfere with several pathways and can act as oncogenes or tumor suppressors. This study aimed to compare miRNA lung expression between subjects with NSCLC and COPD and healthy controls to obtain the miRNA expression profile by analyzing shared pathways. Lung specimens were collected from a prospective cohort of 21 sex-matched subjects to determine the tissue miRNA expression of hsa-miR-34a-5p, 33a-5p, 149-3p, 197-3p, 199-5p, and 320a-3p by RT-PCR. In addition, an in silico prediction of miRNA target genes linked to cancer was performed. We found a specific trend for has-miR-149-3p, 197-3p, and 34a-5p in NSCLC, suggesting their possible role as an index of the tumor microenvironment. Moreover, we identified novel miRNA targets, such as the Cyclin-Dependent Kinase (CDK) family, linked to carcinogenesis by in silico analysis. In conclusion. this study identified lung miRNA signatures related to the tumorigenic microenvironment, suggesting their possible role in improving the evaluation of lung cancer onset.
Collapse
|
20
|
Zamboni M, Mazzali G, Brunelli A, Saatchi T, Urbani S, Giani A, Rossi AP, Zoico E, Fantin F. The Role of Crosstalk between Adipose Cells and Myocytes in the Pathogenesis of Sarcopenic Obesity in the Elderly. Cells 2022; 11:3361. [PMID: 36359757 PMCID: PMC9655977 DOI: 10.3390/cells11213361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2023] Open
Abstract
As a result of aging, body composition changes, with a decline in muscle mass and an increase in adipose tissue (AT), which reallocates from subcutaneous to visceral depots and stores ectopically in the liver, heart and muscles. Furthermore, with aging, muscle and AT, both of which have recognized endocrine activity, become dysfunctional and contribute, in the case of positive energy balance, to the development of sarcopenic obesity (SO). SO is defined as the co-existence of excess adiposity and low muscle mass and function, and its prevalence increases with age. SO is strongly associated with greater morbidity and mortality. The pathogenesis of SO is complex and multifactorial. This review focuses mainly on the role of crosstalk between age-related dysfunctional adipose and muscle cells as one of the mechanisms leading to SO. A better understanding of this mechanisms may be useful for development of prevention strategies and treatments aimed at reducing the occurrence of SO.
Collapse
Affiliation(s)
- Mauro Zamboni
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Gloria Mazzali
- Geriatrics Division, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Anna Brunelli
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Tanaz Saatchi
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Silvia Urbani
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Anna Giani
- Geriatrics Division, Department of Surgery, Dentistry, Pediatric and Gynecology, Healthy Aging Center, University of Verona, 37126 Verona, Italy
| | - Andrea P. Rossi
- Geriatrics Division, Department of Medicine, AULSS2, Ospedale Ca’Foncello, 31100 Treviso, Italy
| | - Elena Zoico
- Geriatrics Division, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Francesco Fantin
- Geriatrics Division, Department of Medicine, University of Verona, 37126 Verona, Italy
| |
Collapse
|
21
|
Holder ER, Alibhai FJ, Caudle SL, McDermott JC, Tobin SW. The importance of biological sex in cardiac cachexia. Am J Physiol Heart Circ Physiol 2022; 323:H609-H627. [PMID: 35960634 DOI: 10.1152/ajpheart.00187.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac cachexia is a catabolic muscle wasting syndrome observed in approximately 1 in 10 heart failure patients. Increased skeletal muscle atrophy leads to frailty and limits mobility which impacts quality of life, exacerbates clinical care, and is associated with higher rates of mortality. Heart failure is known to exhibit a wide range of prevalence and severity when examined across individuals of different ages and with co-morbidities related to diabetes, renal failure and pulmonary dysfunction. It is also recognized that men and women exhibit striking differences in the pathophysiology of heart failure as well as skeletal muscle homeostasis. Given that both skeletal muscle and heart failure physiology are in-part sex dependent, the diagnosis and treatment of cachexia in heart failure patients may depend on a comprehensive examination of how these organs interact. In this review we explore the potential for sex-specific differences in cardiac cachexia. We summarize advantages and disadvantages of clinical methods used to measure muscle mass and function and provide alternative measurements that should be considered in preclinical studies. Additionally, we summarize sex-dependent effects on muscle wasting in preclinical models of heart failure, disuse, and cancer. Lastly, we discuss the endocrine function of the heart and outline unanswered questions that could directly impact patient care.
Collapse
|
22
|
Dato S, Crocco P, Iannone F, Passarino G, Rose G. Biomarkers of Frailty: miRNAs as Common Signatures of Impairment in Cognitive and Physical Domains. BIOLOGY 2022; 11:1151. [PMID: 36009778 PMCID: PMC9405439 DOI: 10.3390/biology11081151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
The past years have seen an increasing concern about frailty, owing to the growing number of elderly people and the major impact of this syndrome on health and social care. The identification of frail people passes through the use of different tests and biomarkers, whose concerted analysis helps to stratify the populations of patients according to their risk profile. However, their efficiency in prognosis and their capability to reflect the multisystemic impairment of frailty is discussed. Recent works propose the use of miRNAs as biological hallmarks of physiological impairment in different organismal districts. Changes in miRNAs expression have been described in biological processes associated with phenotypic outcomes of frailty, opening intriguing possibilities for their use as biomarkers of fragility. Here, with the aim of finding reliable biomarkers of frailty, while considering its complex nature, we revised the current literature on the field, for uncovering miRNAs shared across physical and cognitive frailty domains. By applying in silico analyses, we retrieved the top-ranked shared miRNAs and their targets, finally prioritizing the most significant ones. From this analysis, ten miRNAs emerged which converge into two main biological processes: inflammation and energy homeostasis. Such markers, if validated, may offer promising capabilities for early diagnosis of frailty in the elderly population.
Collapse
Affiliation(s)
- Serena Dato
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.C.); (F.I.); (G.P.); (G.R.)
| | | | | | | | | |
Collapse
|
23
|
Tsai CH, Huang PJ, Lee IT, Chen CM, Wu MH. Endothelin-1-mediated miR-let-7g-5p triggers interlukin-6 and TNF-α to cause myopathy and chronic adipose inflammation in elderly patients with diabetes mellitus. Aging (Albany NY) 2022; 14:3633-3651. [PMID: 35468098 PMCID: PMC9085227 DOI: 10.18632/aging.204034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/13/2022] [Indexed: 11/25/2022]
Abstract
Background: Diabetes and sarcopenia are verified as mutual relationships, which seriously affect the quality of life of the elderly. Endothelin-1 is well investigated, is elevated in patients with diabetes, and is related to muscle cellular senescence and fibrosis. However, the mechanism of ET-1 between diabetes and myopathy is still unclear. The aim of this study was to evaluate the prevalence of sarcopenia in the elderly with diabetes and to clarify its relationship with ET-1 molecular biological mechanism, progress as well as changes in muscle and fat. Methods: We recruited 157 type 2 diabetes patients over 55 years old and investigated the prevalence of sarcopenia in diabetes patients and examined the association of ET-1 alterations with HbA1c, creatinine, or AMS/ht2. Next, sought to determine how ET-1 regulates inflammation in muscle cells by western blot and qPCR assay. Using XF Seahorse Technology, we directly quantified mitochondrial bioenergetics in 3T3-L1 cells. Results: ET-1 was positively correlated with HbA1c, creatinine levels, and duration of disease, and negatively correlated with AMS/ht2. We found that ET-1 dose-dependently induces tumor necrosis factor-α (TNF-α) and interleukin (IL)-6β expression through the PI3K/AKT, and NF-κB signaling pathways in C2C12 cells. Also identified that TNF-α, IL-6β, and visfatin releases were found in co-cultured with conditioned medium of ET-1/C2C12 in 3T3-L1 cells. ET-1 also reduces the energy metabolism of fat and induces micro-environment inflammation which causes myopathy. ET-1 also suppresses miR-let-7g-5p expression in myocytes and adipocytes. Conclusion: We describe a new mechanism of ET-1 triggering chronic inflammation in patients with hyperglycemia.
Collapse
Affiliation(s)
- Chung-Huang Tsai
- Department of Family Medicine, Chung-Kang Branch, Cheng Ching Hospital, Taichung, Taiwan.,Center for General Education, Tunghai University, Taiwan.,Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, Taiwan
| | - Pei-Ju Huang
- Department of Family Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - I T Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chien-Min Chen
- Division of Traditional Chinese Medical, Sinying Hospital, Tainan, Taiwan
| | - Min Huan Wu
- Bachelor of Science in Senior Wellness and Sport Science, Tunghai University, Taiwan.,Senior Life and Innovation Technology Center, Tunghai University, Taiwan.,Life Science Research Center, Tunghai University, Taiwan
| |
Collapse
|
24
|
Role of MicroRNAs and Long Non-Coding RNAs in Sarcopenia. Cells 2022; 11:cells11020187. [PMID: 35053303 PMCID: PMC8773898 DOI: 10.3390/cells11020187] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia is an age-related pathological process characterized by loss of muscle mass and function, which consequently affects the quality of life of the elderly. There is growing evidence that non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play a key role in skeletal muscle physiology. Alterations in the expression levels of miRNAs and lncRNAs contribute to muscle atrophy and sarcopenia by regulating various signaling pathways. This review summarizes the recent findings regarding non-coding RNAs associated with sarcopenia and provides an overview of sarcopenia pathogenesis promoted by multiple non-coding RNA-mediated signaling pathways. In addition, we discuss the impact of exercise on the expression patterns of non-coding RNAs involved in sarcopenia. Identifying non-coding RNAs associated with sarcopenia and understanding the molecular mechanisms that regulate skeletal muscle dysfunction during aging will provide new insights to develop potential treatment strategies.
Collapse
|
25
|
Valášková S, Gažová A, Vrbová P, Koller T, Šalingová B, Adamičková A, Chomaničová N, Hulajová N, Payer J, Kyselovič J. The Severity of Muscle Performance Deterioration in Sarcopenia Correlates With Circulating Muscle Tissue-Specific miRNAs. Physiol Res 2021. [DOI: 10.33549//physiolres.934778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Sarcopenia is defined as an age-associated loss of skeletal muscle function and muscle mass and is common in older adults. Sarcopenia as a disease is currently of interest not only to orthopedists and surgeons but also to internists, endocrinologists, rheumatologists, cardiologists, diabetologists, gynaecologists, geriatricians and paediatricians. In cooperation with the 5th Internal Medicine Clinic, we, as a unit of clinical research, aimed to describe a sarcopenic specific miRNA expression profile for disease diagnostics and classification of the severity of muscle performance deterioration. This study included a total of 80 patients (age 55-86 years) hospitalized at the V. Internal medicine clinic of LFUK and UNB with different severity of muscle performance deterioration. The study participants were evaluated and classified according to short physical performance battery score (SPPB). In this study, we investigated the role of circulating miRNAs in sarcopenia in the elderly. We hypothesized that sarcopenia effects the expression of muscle tissue-specific miRNAs (MyomiRNAs), which could be potentially reflected in the blood plasma miRNA expression profile. The expression of specific circulating miRNAs in patients with different muscle performances was analyzed. Patients’ blood plasma was evaluated for the expression of myomiRNAs: miRNA-29a, miRNA-29b, miRNA-1, miRNA-133a, miRNA-133b, miRNA-206, miRNA-208b and miRNA-499, and the data were correlated with diagnostic indicators of the disease. We showed a specific sarcopenia miRNA profile that could be considered a possible biomarker for the disease. Patients with low muscle performance showed increased miRNA-1, miRNA-29a and miRNA-29b expression and decreased for the miRNA-206, miRNA-133a, miRNA-133b, miRNA-208b and miRNA-499 expression. We show that the severity of muscle performance deterioration in sarcopenia correlates with specific miRNA expression. We also propose the profile of miRNAs expression in blood plasma as a specific biomarker for sarcopenia diagnostics. Future clinical studies will be necessary to eventually naturally have to elucidate the underlined molecular mechanism responsible for specific miRNAs expression in sarcopenia pathology and progression of the disease.
Collapse
Affiliation(s)
| | - A. Gažová
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vrbová P, Valášková S, Gažová A, Smaha J, Kužma M, Kyselovič J, Payer J, Koller T. Biomarkers of the Physical Function Mobility Domains Among
Patients Hospitalized in Internal Medicine. Physiol Res 2021. [DOI: 10.33549//physiolres.934777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Hospitalized patients in internal medicine have an increased risk of low physical reserve which further declines during the hospital stay. The diagnosis requires bed-side testing of functional domains or more complex investigations of the muscle mass. Clinically useful biomarkers of functional status are needed, thus we aimed to explore the potential of microRNAs. Among hospitalized patients, we recorded the basic demographics, anthropometrics, nutritional status, and physical function domains: hand-grip strength (HGS, abnormal values M<30 kg, W<20 kg), balance (<30 s), chair-stands speed (CHSS<0.5/s) and gait speed (GS<0.8 m/s). A panel of five micro-RNAs (miRNA 1, miRNA 133a, miRNA 133b, miRNA 29a, miRNA 29b) and basic blood biochemistry and vitamin D values were recorded. We enrolled 80 patients (M40, W40), with a mean age of 68.8±8.4 years. Obesity was observed in 27.5 % and 30 %, low HGS and low CHSS in 65.0, 77.5 %, and 80, 90 % of men and women respectively. The median hospital stay was 6.5 days. MiRNA29a and miRNA29b have the strongest correlation with the triceps skinfold (miRNA 29b, r=0.377, p=0.0006) and CHSS (miRNA 29a, r=0.262, p=0.02). MiRNA 29a, miRNA 29b and 133a levels were significantly higher in patients with CHSS<0.5/s. Other anthropometric parameters, mobility domains, or vitamin D did not correlate. All miRNAs except of miRNA 1, could predict low CHSS (miRNA29b, AUROC=0.736 CI 0.56-0.91, p=0.01), particularly in patients with low HGS (miRNA 29b, AUROC=0.928 CI 0.83-0.98). Among hospitalized patients in internal medicine, low functional status was frequent. MicroRNAs were fair biomarkers of the antigravity domain, but not other domains. Larger studies with clinical endpoints are needed.
Collapse
Affiliation(s)
- P. Vrbová
- 5th Department of Internal Medicine, Comenius University Faculty of Medicine, University Hospital Bratislava, Bratislava, Slovakia.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Mytidou C, Koutsoulidou A, Zachariou M, Prokopi M, Kapnisis K, Spyrou GM, Anayiotos A, Phylactou LA. Age-Related Exosomal and Endogenous Expression Patterns of miR-1, miR-133a, miR-133b, and miR-206 in Skeletal Muscles. Front Physiol 2021; 12:708278. [PMID: 34867435 PMCID: PMC8637414 DOI: 10.3389/fphys.2021.708278] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle growth and maintenance depend on two tightly regulated processes, myogenesis and muscle regeneration. Both processes involve a series of crucial regulatory molecules including muscle-specific microRNAs, known as myomiRs. We recently showed that four myomiRs, miR-1, miR-133a, miR-133b, and miR-206, are encapsulated within muscle-derived exosomes and participate in local skeletal muscle communication. Although these four myomiRs have been extensively studied for their function in muscles, no information exists regarding their endogenous and exosomal levels across age. Here we aimed to identify any age-related changes in the endogenous and muscle-derived exosomal myomiR levels during acute skeletal muscle growth. The four endogenous and muscle-derived myomiRs were investigated in five skeletal muscles (extensor digitorum longus, soleus, tibialis anterior, gastrocnemius, and quadriceps) of 2-week–1-year-old wild-type male mice. The expression of miR-1, miR-133a, and miR-133b was found to increase rapidly until adolescence in all skeletal muscles, whereas during adulthood it remained relatively stable. By contrast, endogenous miR-206 levels were observed to decrease with age in all muscles, except for soleus. Differential expression of the four myomiRs is also inversely reflected on the production of two protein targets; serum response factor and connexin 43. Muscle-derived exosomal miR-1, miR-133a, and miR-133b levels were found to increase until the early adolescence, before reaching a plateau phase. Soleus was found to be the only skeletal muscle to release exosomes enriched in miR-206. In this study, we showed for the first time an in-depth longitudinal analysis of the endogenous and exosomal levels of the four myomiRs during skeletal muscle development. We showed that the endogenous expression and extracellular secretion of the four myomiRs are associated to the function and size of skeletal muscles as the mice age. Overall, our findings provide new insights for the myomiRs’ significant role in the first year of life in mice.
Collapse
Affiliation(s)
- Chrystalla Mytidou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andrie Koutsoulidou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Margarita Zachariou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marianna Prokopi
- Theramir Ltd., Limassol, Cyprus.,Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Konstantinos Kapnisis
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - George M Spyrou
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Bioinformatics Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Anayiotos
- Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
28
|
Liu Q, Deng J, Qiu Y, Gao J, Li J, Guan L, Lee H, Zhou Q, Xiao J. Non-coding RNA basis of muscle atrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1066-1078. [PMID: 34786211 PMCID: PMC8569427 DOI: 10.1016/j.omtn.2021.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Muscle atrophy is a common complication of many chronic diseases including heart failure, cancer cachexia, aging, etc. Unhealthy habits and usage of hormones such as dexamethasone can also lead to muscle atrophy. However, the underlying mechanisms of muscle atrophy are not completely understood. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), play vital roles in muscle atrophy. This review mainly discusses the regulation of ncRNAs in muscle atrophy induced by various factors such as heart failure, cancer cachexia, aging, chronic obstructive pulmonary disease (COPD), peripheral nerve injury (PNI), chronic kidney disease (CKD), unhealthy habits, and usage of hormones; highlights the findings of ncRNAs as common regulators in multiple types of muscle atrophy; and summarizes current therapies and underlying mechanisms for muscle atrophy. This review will deepen the understanding of skeletal muscle biology and provide new strategies and insights into gene therapy for muscle atrophy.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jiali Deng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Yan Qiu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Juan Gao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Jin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Hangil Lee
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Qiulian Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China.,Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
29
|
Vrbová P, Valášková S, Gažová A, Smaha J, Kužma M, Kyselovič J, Payer J, Koller T. Biomarkers of the Physical Function Mobility Domains Among Patients Hospitalized in Internal Medicine. Physiol Res 2021; 70:S79-S89. [PMID: 34918532 PMCID: PMC8884383 DOI: 10.33549/physiolres.934777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Hospitalized patients in internal medicine have an increased risk of low physical reserve which further declines during the hospital stay. The diagnosis requires bed-side testing of functional domains or more complex investigations of the muscle mass. Clinically useful biomarkers of functional status are needed, thus we aimed to explore the potential of microRNAs. Among hospitalized patients, we recorded the basic demographics, anthropometrics, nutritional status, and physical function domains: hand-grip strength (HGS, abnormal values M<30 kg, W<20 kg), balance (<30 s), chair-stands speed (CHSS<0.5/s) and gait speed (GS<0.8 m/s). A panel of five micro-RNAs (miRNA 1, miRNA 133a, miRNA 133b, miRNA 29a, miRNA 29b) and basic blood biochemistry and vitamin D values were recorded. We enrolled 80 patients (M40, W40), with a mean age of 68.8±8.4 years. Obesity was observed in 27.5 % and 30 %, low HGS and low CHSS in 65.0, 77.5 %, and 80, 90 % of men and women respectively. The median hospital stay was 6.5 days. MiRNA29a and miRNA29b have the strongest correlation with the triceps skinfold (miRNA 29b, r=0.377, p=0.0006) and CHSS (miRNA 29a, r=0.262, p=0.02). MiRNA 29a, miRNA 29b and 133a levels were significantly higher in patients with CHSS<0.5/s. Other anthropometric parameters, mobility domains, or vitamin D did not correlate. All miRNAs except of miRNA 1, could predict low CHSS (miRNA29b, AUROC=0.736 CI 0.56-0.91, p=0.01), particularly in patients with low HGS (miRNA 29b, AUROC=0.928 CI 0.83-0.98). Among hospitalized patients in internal medicine, low functional status was frequent. MicroRNAs were fair biomarkers of the antigravity domain, but not other domains. Larger studies with clinical endpoints are needed.
Collapse
Affiliation(s)
- P Vrbová
- 5th Department of Internal Medicine, Comenius University Faculty of Medicine, University Hospital Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Valášková S, Gažová A, Vrbová P, Koller T, Šalingova B, Adamičková A, Chomaničová N, Hulajová N, Payer J, Kyselovič J. The Severity of Muscle Performance Deterioration in Sarcopenia Correlates With Circulating Muscle Tissue-Specific miRNAs. Physiol Res 2021; 70:S91-S98. [PMID: 35503054 PMCID: PMC8884374 DOI: 10.33549/physiolres.934778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Sarcopenia is defined as an age-associated loss of skeletal muscle function and muscle mass and is common in older adults. Sarcopenia as a disease is currently of interest not only to orthopedists and surgeons but also to internists, endocrinologists, rheumatologists, cardiologists, diabetologists, gynaecologists, geriatricians and paediatricians. In cooperation with the 5th Internal Medicine Clinic, we, as a unit of clinical research, aimed to describe a sarcopenic specific miRNA expression profile for disease diagnostics and classification of the severity of muscle performance deterioration. This study included a total of 80 patients (age 55-86 years) hospitalized at the V. Internal medicine clinic of LFUK and UNB with different severity of muscle performance deterioration. The study participants were evaluated and classified according to short physical performance battery score (SPPB). In this study, we investigated the role of circulating miRNAs in sarcopenia in the elderly. We hypothesized that sarcopenia effects the expression of muscle tissue-specific miRNAs (MyomiRNAs), which could be potentially reflected in the blood plasma miRNA expression profile. The expression of specific circulating miRNAs in patients with different muscle performances was analyzed. Patients' blood plasma was evaluated for the expression of myomiRNAs: miRNA-29a, miRNA-29b, miRNA-1, miRNA-133a, miRNA-133b, miRNA-206, miRNA-208b and miRNA-499, and the data were correlated with diagnostic indicators of the disease. We showed a specific sarcopenia miRNA profile that could be considered a possible biomarker for the disease. Patients with low muscle performance showed increased miRNA-1, miRNA-29a and miRNA-29b expression and decreased for the miRNA-206, miRNA-133a, miRNA-133b, miRNA-208b and miRNA-499 expression. We show that the severity of muscle performance deterioration in sarcopenia correlates with specific miRNA expression. We also propose the profile of miRNAs expression in blood plasma as a specific biomarker for sarcopenia diagnostics. Future clinical studies will be necessary to eventually naturally have to elucidate the underlined molecular mechanism responsible for specific miRNAs expression in sarcopenia pathology and progression of the disease.
Collapse
Affiliation(s)
- S Valášková
- Institute of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Comenius University Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jones TL, Esa MS, Li KHC, Krishnan SRG, Elgallab GM, Pearce MS, Young DA, Birrell FN. Osteoporosis, fracture, osteoarthritis & sarcopenia: A systematic review of circulating microRNA association. Bone 2021; 152:116068. [PMID: 34166859 DOI: 10.1016/j.bone.2021.116068] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/16/2021] [Accepted: 06/15/2021] [Indexed: 12/18/2022]
Abstract
Circulating microRNAs (c-miRs) show promise as biomarkers. This systematic review explores their potential association with age-related fracture/osteoporosis (OP), osteoarthritis (OA) and sarcopenia (SP), as well as cross-disease association. Most overlap occurred between OA and OP, suggesting potentially shared microRNA activity. There was little agreement in results across studies. Few reported receiver operating characteristic analysis (ROC) and many identified significant dysregulation in disease, but direction of effect was commonly conflicting. c-miRs with most evidence for consistency in dysregulation included miR-146a, miR-155 and miR-98 for OA (upregulated). Area under the curve (AUC) for miR-146a biomarker performance was AUC 0.92, p = 0.028. miR-125b (AUC 0.76-0.89), miR-100, miR-148a and miR-24 were consistently upregulated in OP. Insufficient evidence exists for c-miRs in SP. Study quality was typically rated intermediate/high risk of bias. Wide study heterogeneity meant meta-analysis was not possible. We provide detailed critique and recommendations for future approaches in c-miR analyses based on this review.
Collapse
Affiliation(s)
- Tania L Jones
- Population Health Sciences Institute, Faculty of Medicine, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom.
| | - Mohammed S Esa
- Population Health Sciences Institute, Faculty of Medicine, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom.
| | - K H Christien Li
- Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - S R Gokul Krishnan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom.
| | - George M Elgallab
- Faculty of Health Sciences and Wellbeing, Sciences Complex, City Campus, Chester Road, University of Sunderland, Sunderland SR1 3SD, United Kingdom
| | - Mark S Pearce
- Population Health Sciences Institute, Faculty of Medicine, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom.
| | - David A Young
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, United Kingdom.
| | - Fraser N Birrell
- Population Health Sciences Institute, Faculty of Medicine, Newcastle University, Sir James Spence Building, Royal Victoria Infirmary, Newcastle upon Tyne NE1 4LP, United Kingdom; Medical Research Council Versus Arthritis Centre for Integrated Research into Musculoskeletal Ageing, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
32
|
Agostini S, Mancuso R, Costa AS, Guerini FR, Trecate F, Miglioli R, Menna E, Arosio B, Clerici M. Sarcopenia associates with SNAP-25 SNPs and a miRNAs profile which is modulated by structured rehabilitation treatment. J Transl Med 2021; 19:315. [PMID: 34289870 PMCID: PMC8296538 DOI: 10.1186/s12967-021-02989-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sarcopenia is a loss of muscle mass and strength causing disability, morbidity, and mortality in older adults, which is characterized by alterations of the neuromuscular junctions (NMJs). SNAP-25 is essential for the maintenance of NMJ integrity, and the expression of this protein was shown to be modulated by the SNAP-25 rs363050 polymorphism and by a number of miRNAs. METHODS We analysed these parameters in a cohort of sarcopenic patients undergoing structured rehabilitation. The rs363050 genotype frequency distribution was analyzed in 177 sarcopenic patients and 181 healthy controls (HC). The concentration of seven miRNAs (miR-451a, miR-425-5p, miR155-5p, miR-421-3p, miR-495-3p, miR-744-5p and miR-93-5p), identified by mouse brain miRNome analysis to be differentially expressed in wild type compared to SNAP-25± heterozygous mice, was analyzed as well by droplet digital PCR (ddPCR) in a subgroup of severe sarcopenic patients undergoing rehabilitation. RESULTS The SNAP-25 rs363050 AA genotype was significantly more common in sarcopenic patients compared to HC (pc = 0.01); miR-451a was significantly up-regulated in these patients before rehabilitation. Rehabilitation modified miRNAs expression, as miR-155-5p, miR-421-3p, miR-451a, miR-425-5p, miR-744-5p and miR-93-5p expression was significantly up-regulated (p < 0.01), whereas that of miR-495-3p was significantly down-regulated (p < 0.001) by rehabilitation. Notably, rehabilitation-associated improvement of the muscle-skeletal SPPB score was significantly associated with the reduction of miR-451a expression. CONCLUSION These results support the hypothesis of a role for SNAP-25 in sarcopenia and suggest SNAP-25-associated miRNAs as circulatory biomarkers of rehabilitative outcome for sarcopenia.
Collapse
Affiliation(s)
- Simone Agostini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, P.zza Morandi, 3, 20100 Milan, Italy
| | - Roberta Mancuso
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, P.zza Morandi, 3, 20100 Milan, Italy
| | - Andrea Saul Costa
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, P.zza Morandi, 3, 20100 Milan, Italy
| | - Franca Rosa Guerini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, P.zza Morandi, 3, 20100 Milan, Italy
| | - Fabio Trecate
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, P.zza Morandi, 3, 20100 Milan, Italy
| | - Rossella Miglioli
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, P.zza Morandi, 3, 20100 Milan, Italy
| | - Elisabetta Menna
- CNR-Institute of Neuroscience, Milan, Italy
- Humanitas Clinical and Research Center–IRCCS, via Manzoni 56, 20089 Rozzano, MI Italy
| | - Beatrice Arosio
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, P.zza Morandi, 3, 20100 Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - the SA. M. B. A. project
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, P.zza Morandi, 3, 20100 Milan, Italy
- CNR-Institute of Neuroscience, Milan, Italy
- Humanitas Clinical and Research Center–IRCCS, via Manzoni 56, 20089 Rozzano, MI Italy
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
33
|
Ma Z, Yang J, Zhang Q, Xu C, Wei J, Sun L, Wang D, Tao W. miR-133b targets tagln2 and functions in tilapia oogenesis. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110637. [PMID: 34147671 DOI: 10.1016/j.cbpb.2021.110637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 10/21/2022]
Abstract
microRNAs (miRNAs) are important components of non-coding RNAs that participate in diverse life activities by regulating gene expression at the post transcriptional level through base complementary pairing with 3'UTRs of target mRNAs. miR-133b is a member of the miR-133 family, which play important roles in muscle differentiation and tumorigenesis. Recently, miR-133b was reported to affect estrogen synthesis by targeting foxl2 in mouse, while its role in fish reproduction remains to be elucidated. In the present study, we isolated the complete sequence of miR-133b, which was highly expressed in tilapia ovary at 30 and 90 dah (days after hatching) and subsequently decreased at 120 to 150 dah by qPCR. Interestingly, only a few oogonia were remained in the antagomir-133b treated tilapia ovary, while phase I and II oocytes were observed in the ovaries of the control group. Unexpectedly, the expression of foxl2 and cyp19a1a, as well as estradiol levels in serum were increased in the treated group. Furthermore, tagln2, an important factor for oogenesis, was predicted as the target gene of miR-133b, which was confirmed by dual luciferase reporter vector experiments. miR-133b and tagln2 were co-expressed in tilapia ovaries. Taken together, miR-133b may be involved in the early oogenesis of tilapia by regulating tagln2 expression. This study enriches the understanding of miR-133b function during oogenesis and lays a foundation for further study of the regulatory network during oogenesis.
Collapse
Affiliation(s)
- Zhisheng Ma
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qingqing Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunmei Xu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jing Wei
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
34
|
Dobrowolny G, Barbiera A, Sica G, Scicchitano BM. Age-Related Alterations at Neuromuscular Junction: Role of Oxidative Stress and Epigenetic Modifications. Cells 2021; 10:1307. [PMID: 34074012 PMCID: PMC8225025 DOI: 10.3390/cells10061307] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
With advancing aging, a decline in physical abilities occurs, leading to reduced mobility and loss of independence. Although many factors contribute to the physio-pathological effects of aging, an important event seems to be related to the compromised integrity of the neuromuscular system, which connects the brain and skeletal muscles via motoneurons and the neuromuscular junctions (NMJs). NMJs undergo severe functional, morphological, and molecular alterations during aging and ultimately degenerate. The effect of this decline is an inexorable decrease in skeletal muscle mass and strength, a condition generally known as sarcopenia. Moreover, several studies have highlighted how the age-related alteration of reactive oxygen species (ROS) homeostasis can contribute to changes in the neuromuscular junction morphology and stability, leading to the reduction in fiber number and innervation. Increasing evidence supports the involvement of epigenetic modifications in age-dependent alterations of the NMJ. In particular, DNA methylation, histone modifications, and miRNA-dependent gene expression represent the major epigenetic mechanisms that play a crucial role in NMJ remodeling. It is established that environmental and lifestyle factors, such as physical exercise and nutrition that are susceptible to change during aging, can modulate epigenetic phenomena and attenuate the age-related NMJs changes. This review aims to highlight the recent epigenetic findings related to the NMJ dysregulation during aging and the role of physical activity and nutrition as possible interventions to attenuate or delay the age-related decline in the neuromuscular system.
Collapse
Affiliation(s)
- Gabriella Dobrowolny
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics (DAHFMO)-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy;
| | - Alessandra Barbiera
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| | - Gigliola Sica
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| | - Bianca Maria Scicchitano
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| |
Collapse
|
35
|
Adipocyte, Immune Cells, and miRNA Crosstalk: A Novel Regulator of Metabolic Dysfunction and Obesity. Cells 2021; 10:cells10051004. [PMID: 33923175 PMCID: PMC8147115 DOI: 10.3390/cells10051004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity is characterized as a complex and multifactorial excess accretion of adipose tissue (AT) accompanied with alterations in the immune response that affects virtually all age and socioeconomic groups around the globe. The abnormal accumulation of AT leads to several metabolic diseases, including nonalcoholic fatty liver disorder (NAFLD), low-grade inflammation, type 2 diabetes mellitus (T2DM), cardiovascular disorders (CVDs), and cancer. AT is an endocrine organ composed of adipocytes and immune cells, including B-Cells, T-cells and macrophages. These immune cells secrete various cytokines and chemokines and crosstalk with adipokines to maintain metabolic homeostasis and low-grade chronic inflammation. A novel form of adipokines, microRNA (miRs), is expressed in many developing peripheral tissues, including ATs, T-cells, and macrophages, and modulates the immune response. miRs are essential for insulin resistance, maintaining the tumor microenvironment, and obesity-associated inflammation (OAI). The abnormal regulation of AT, T-cells, and macrophage miRs may change the function of different organs including the pancreas, heart, liver, and skeletal muscle. Since obesity and inflammation are closely associated, the dysregulated expression of miRs in inflammatory adipocytes, T-cells, and macrophages suggest the importance of miRs in OAI. Therefore, in this review article, we have elaborated the role of miRs as epigenetic regulators affecting adipocyte differentiation, immune response, AT browning, adipogenesis, lipid metabolism, insulin resistance (IR), glucose homeostasis, obesity, and metabolic disorders. Further, we will discuss a set of altered miRs as novel biomarkers for metabolic disease progression and therapeutic targets for obesity.
Collapse
|
36
|
The Impact of Melatonin and NLRP3 Inflammasome on the Expression of microRNAs in Aged Muscle. Antioxidants (Basel) 2021; 10:antiox10040524. [PMID: 33801675 PMCID: PMC8066875 DOI: 10.3390/antiox10040524] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/19/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
Muscular aging is a complex process and underlying physiological mechanisms are not fully clear. In recent years, the participation of the NF-kB pathway and the NLRP3 inflammasome in the chronic inflammation process that accompanies the skeletal muscle's aging has been confirmed. microRNAs (miRs) form part of a gene regulatory machinery, and they control numerous biological processes including inflammatory pathways. In this work, we studied the expression of four miRs; three of them are considered as inflammatory-related miRs (miR-21, miR-146a, and miR-223), and miR-483, which is related to the regulation of melatonin synthesis, among other targets. To investigate the changes of miRs expression in muscle along aging, the impact of inflammation, and the role of melatonin in aged skeletal muscle, we used the gastrocnemius muscle of wild type (WT) and NLRP3-knockout (NLRP3-) mice of 3, 12, and 24 months-old, with and without melatonin supplementation. The expression of miRs and pro-caspase-1, caspase-3, pro-IL-1β, bax, bcl-2, and p53, was investigated by qRT-PCR analysis. Histological examination of the gastrocnemius muscle was also done. The results showed that age increased the expression of miR-21 (p < 0.01), miR-146a, and miR-223 (p < 0.05, for both miRs) in WT mice, whereas the 24-months-old mutant mice revealed decline of miR-21 and miR-223 (p < 0.05), compared to WT age. The lack of NLRP3 inflammasome also improved the skeletal muscle fibers arrangement and reduced the collagen deposits compared with WT muscle during aging. For the first time, we showed that melatonin significantly reduced the expression of miR-21, miR-146a, and miR-223 (p < 0.05 for all ones, and p < 0.01 for miR-21 at 24 months old) in aged WT mice, increased miR-223 in NLRP3- mice (p < 0.05), and induced miR-483 expression in both mice strains, this increase being significant at 24 months of age.
Collapse
|
37
|
Taetzsch T, Shapiro D, Eldosougi R, Myers T, Settlage RE, Valdez G. The microRNA miR-133b functions to slow Duchenne muscular dystrophy pathogenesis. J Physiol 2021; 599:171-192. [PMID: 32991751 PMCID: PMC8418193 DOI: 10.1113/jp280405] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS Impairment of muscle biogenesis contributes to the progression of Duchenne muscular dystrophy (DMD). As a muscle enriched microRNA that has been implicated in muscle biogenesis, the role of miR-133b in DMD remains unknown. To assess miR-133b function in DMD-affected skeletal muscles, we genetically ablated miR-133b in the mdx mouse model of DMD. We show that deletion of miR-133b exacerbates the dystrophic phenotype of DMD-afflicted skeletal muscle by dysregulating muscle stem cells involved in muscle biogenesis, in addition to affecting signalling pathways related to inflammation and fibrosis. Our results provide evidence that miR-133b may underlie DMD pathology by affecting the proliferation and differentiation of muscle stem cells. ABSTRACT Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle degeneration. No treatments are currently available to prevent the disease. While the muscle enriched microRNA miR-133b has been implicated in muscle biogenesis, its role in DMD remains unknown. To assess miR-133b function in DMD-affected skeletal muscles, we genetically ablated miR-133b in the mdx mouse model of DMD. In the absence of miR-133b, the tibialis anterior muscle of P30 mdx mice is smaller in size and exhibits a thickened interstitial space containing more mononucleated cells. Additional analysis revealed that miR-133b deletion influences muscle fibre regeneration, satellite cell proliferation and differentiation, and induces widespread transcriptomic changes in mdx muscle. These include known miR-133b targets as well as genes involved in cell proliferation and fibrosis. Altogether, our data demonstrate that skeletal muscles utilize miR-133b to mitigate the deleterious effects of DMD.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Dillon Shapiro
- Molecular Biology, Cell Biology, & Biochemistry Graduate Program, Brown University, Providence, RI, USA
| | - Randa Eldosougi
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Tracey Myers
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | | | - Gregorio Valdez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, United States
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, United States
| |
Collapse
|
38
|
Nardi M, Baldelli S, Ciriolo MR, Costanzo P, Procopio A, Colica C. Oleuropein Aglycone Peracetylated (3,4-DHPEA-EA(P)) Attenuates H 2O 2-Mediated Cytotoxicity in C2C12 Myocytes via Inactivation of p-JNK/p-c-Jun Signaling Pathway. Molecules 2020; 25:E5472. [PMID: 33238414 PMCID: PMC7700591 DOI: 10.3390/molecules25225472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022] Open
Abstract
Oleuropein, a glycosylated secoiridoid present in olive leaves, is known to be an important antioxidant phenolic compound. We studied the antioxidant effect of low doses of oleuropein aglycone (3,4-DHPEA-EA) and oleuropein aglycone peracetylated (3,4-DHPEA-EA(P)) in murine C2C12 myocytes treated with hydrogen peroxide (H2O2). Both compounds were used at a concentration of 10 μM and were able to inhibit cell death induced by the H2O2 treatment, with 3,4-DHPEA-EA(P) being more. Under our experimental conditions, H2O2 efficiently induced the phosphorylated-active form of JNK and of its downstream target c-Jun. We demonstrated, by Western blot analysis, that 3,4-DHPEA-EA(P) was efficient in inhibiting the phospho-active form of JNK. This data suggests that the growth arrest and cell death of C2C12 proceeds via the JNK/c-Jun pathway. Moreover, we demonstrated that 3,4-DHPEA-EA(P) affects the myogenesis of C2C12 cells; because MyoD mRNA levels and the differentiation process are restored with 3,4-DHPEA-EA(P) after treatment. Overall, the results indicate that 3,4-DHPEA-EA(P) prevents ROS-mediated degenerative process by functioning as an efficient antioxidant.
Collapse
Affiliation(s)
- Monica Nardi
- Dipartimento di Scienze Della Salute, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy; (P.C.); (A.P.)
| | - Sara Baldelli
- Department of Human Sciences and Promotion of the Quality of Life, IRCCS San Raffaele Pisana, San Raffaele Roma Open University, 00163 Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- IRCCS San Raffaele Pisana, 00163 Rome, Italy
| | - Paola Costanzo
- Dipartimento di Scienze Della Salute, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy; (P.C.); (A.P.)
| | - Antonio Procopio
- Dipartimento di Scienze Della Salute, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy; (P.C.); (A.P.)
| | - Carmela Colica
- CNR, IBFM UOS, Università Magna Graecia, Viale Europa, 88100 Germaneto, Italy;
| |
Collapse
|
39
|
Chen R, Lei S, Jiang T, She Y, Shi H. Regulation of Skeletal Muscle Atrophy in Cachexia by MicroRNAs and Long Non-coding RNAs. Front Cell Dev Biol 2020; 8:577010. [PMID: 33043011 PMCID: PMC7523183 DOI: 10.3389/fcell.2020.577010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle atrophy is a common complication of cachexia, characterized by progressive bodyweight loss and decreased muscle strength, and it significantly increases the risks of morbidity and mortality in the population with atrophy. Numerous complications associated with decreased muscle function can activate catabolism, reduce anabolism, and impair muscle regeneration, leading to muscle wasting. microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), types of non-coding RNAs, are important for regulation of skeletal muscle development. Few studies have specifically identified the roles of miRNAs and lncRNAs in cellular or animal models of muscular atrophy during cachexia, and the pathogenesis of skeletal muscle wasting in cachexia is not entirely understood. To develop potential approaches to improve skeletal muscle mass, strength, and function, a more comprehensive understanding of the known key pathophysiological processes leading to muscular atrophy is needed. In this review, we summarize the known miRNAs, lncRNAs, and corresponding signaling pathways involved in regulating skeletal muscle atrophy in cachexia and other diseases. A comprehensive understanding of the functions and mechanisms of miRNAs and lncRNAs during skeletal muscle wasting in cachexia and other diseases will, therefore, promote therapeutic treatments for muscle atrophy.
Collapse
Affiliation(s)
- Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ting Jiang
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Huacai Shi
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
40
|
Nutrition and microRNAs: Novel Insights to Fight Sarcopenia. Antioxidants (Basel) 2020; 9:antiox9100951. [PMID: 33023202 PMCID: PMC7601022 DOI: 10.3390/antiox9100951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Sarcopenia is a progressive age-related loss of skeletal muscle mass and strength, which may result in increased physical frailty and a higher risk of adverse events. Low-grade systemic inflammation, loss of muscle protein homeostasis, mitochondrial dysfunction, and reduced number and function of satellite cells seem to be the key points for the induction of muscle wasting, contributing to the pathophysiological mechanisms of sarcopenia. While a range of genetic, hormonal, and environmental factors has been reported to contribute to the onset of sarcopenia, dietary interventions targeting protein or antioxidant intake may have a positive effect in increasing muscle mass and strength, regulating protein homeostasis, oxidative reaction, and cell autophagy, thus providing a cellular lifespan extension. MicroRNAs (miRNAs) are endogenous small non-coding RNAs, which control gene expression in different tissues. In skeletal muscle, a range of miRNAs, named myomiRNAs, are involved in many physiological processes, such as growth, development, and maintenance of muscle mass and function. This review aims to present and to discuss some of the most relevant molecular mechanisms related to the pathophysiological effect of sarcopenia. Besides, we explored the role of nutrition as a possible way to counteract the loss of muscle mass and function associated with ageing, with special attention paid to nutrient-dependent miRNAs regulation. This review will provide important information to better understand sarcopenia and, thus, to facilitate research and therapeutic strategies to counteract the pathophysiological effect of ageing.
Collapse
|
41
|
Borja-Gonzalez M, Casas-Martinez JC, McDonagh B, Goljanek-Whysall K. Aging Science Talks: The role of miR-181a in age-related loss of muscle mass and function. TRANSLATIONAL MEDICINE OF AGING 2020; 4:81-85. [PMID: 32835152 PMCID: PMC7341035 DOI: 10.1016/j.tma.2020.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023] Open
Affiliation(s)
- Maria Borja-Gonzalez
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Jose C Casas-Martinez
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Brian McDonagh
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
| | - Katarzyna Goljanek-Whysall
- School of Medicine, Physiology, National University of Ireland Galway, Galway, H91 W5P7, Ireland
- Institute of Aging and Chronic Disease & The Medical Research Council Versus Arthritis Centre for Integrated Research Into Musculoskeletal Aging, CIMA, University of Liverpool, Liverpool, L7 8TJ, UK
| |
Collapse
|
42
|
Li Y, Chen M, Zhao Y, Li M, Qin Y, Cheng S, Yang Y, Yin P, Zhang L, Tang P. Advance in Drug Delivery for Ageing Skeletal Muscle. Front Pharmacol 2020; 11:1016. [PMID: 32733249 PMCID: PMC7360840 DOI: 10.3389/fphar.2020.01016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
The age-related loss of skeletal muscle, sarcopenia, is characterized by progressive loss of muscle mass, reduction in muscle strength, and dysfunction of physical performance. It has become a global health problem leading to several adverse outcomes in the ageing population. Research on skeletal muscle loss prevention and treatment is developing quickly. However, the current clinical approaches to sarcopenia are limited. Recently, novel drug delivery systems offer new possibilities for treating aged muscle loss. Herein, we briefly recapitulate the potential therapeutic targets of aged skeletal muscle and provide a concise advance in the drug delivery systems, mainly focus on the use of nano-carriers. Furthermore, we elaborately discuss the prospect of aged skeletal muscle treatment by nanotechnology approaches.
Collapse
Affiliation(s)
- Yi Li
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ming Chen
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yanpeng Zhao
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Ming Li
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Yong Qin
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shi Cheng
- The Department of Orthopedic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanyu Yang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Pengbin Yin
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Licheng Zhang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| | - Peifu Tang
- Department of Orthopedics, General Hospital of Chinese PLA, Beijing, China.,National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, China
| |
Collapse
|