1
|
de Souza MSDS, Borges LLR, Kobi HDB, Freitas VV, Rigolon TCB, Olegário LS, Gutiérrez EA, Felix PHC, Vidigal MCTR, Stringheta PC. Roasted and Unroasted Cocoa Nibs: Bioactive Compounds Analysis and Application in Cereal Bars. Foods 2024; 13:3510. [PMID: 39517294 PMCID: PMC11545075 DOI: 10.3390/foods13213510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Cocoa beans contain a variety of nutritional compounds and are rich in biologically active substances. The aim of this study was to utilize cocoa nibs (roasted and unroasted) as the main ingredient in the development of an attractive and convenient product. The produced nibs were analyzed for total phenolics, flavonoids, and antioxidant capacity using DPPH, ABTS, and FRAP methods. The primary phenolic compounds and methylxanthines were analyzed by LC/MS. Subsequently, cereal bars were developed, including a control sample (without nibs) and five formulations containing 41% nibs, using various proportions of roasted and unroasted nibs. The influence of the origin of the beans on the product characteristics was also evaluated. The results showed that the roasting process led to a reduction in epicatechin, caffeine, and caffeic acid. Furthermore, the reduction in total phenolics, flavonoids, and antioxidant capacity after roasting was more pronounced in beans from Bahia compared to those from Espírito Santo. Regarding the cereal bars, the results demonstrated that using cocoa from Bahia, the formulation with a higher proportion of unroasted nibs (F80) significantly increased the total phenolic content (1968.85 mg of gallic acid/100 g) and total flavonoids (39.26 mg of quercetin/100 g). This initial study suggests that the use of cocoa nibs as a functional ingredient in cereal bars may be a viable and advantageous option for creating a product with greater antioxidant potential.
Collapse
Affiliation(s)
- Mariane Sampaio da Silveira de Souza
- Department of Food Technology, Universidade Federal de Viçosa, Avenue Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil (P.H.C.F.); (M.C.T.R.V.); (P.C.S.)
| | - Larissa Lorrane Rodrigues Borges
- Department of Food Technology, Universidade Federal de Viçosa, Avenue Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil (P.H.C.F.); (M.C.T.R.V.); (P.C.S.)
| | - Hélia de Barros Kobi
- Department of Food Technology, Universidade Federal de Viçosa, Avenue Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil (P.H.C.F.); (M.C.T.R.V.); (P.C.S.)
| | - Valdeir Viana Freitas
- Department of Food Technology, Universidade Federal de Viçosa, Avenue Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil (P.H.C.F.); (M.C.T.R.V.); (P.C.S.)
| | - Thaís Caroline Buttow Rigolon
- Department of Food Technology, Universidade Federal de Viçosa, Avenue Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil (P.H.C.F.); (M.C.T.R.V.); (P.C.S.)
| | - Lary Souza Olegário
- Department of Animal Production and Food Science, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Eliana Alviarez Gutiérrez
- Research Institute for Sustainable Development of de Ceja de Selva, Universidade Nacional Toribio Rodríguez de Mendoza do Amazonas, Chachapoyas 01001, Peru
| | - Pedro Henrique Campelo Felix
- Department of Food Technology, Universidade Federal de Viçosa, Avenue Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil (P.H.C.F.); (M.C.T.R.V.); (P.C.S.)
| | | | - Paulo Cesar Stringheta
- Department of Food Technology, Universidade Federal de Viçosa, Avenue Peter Henry Rolfs, s/n, Viçosa 36570-900, Brazil (P.H.C.F.); (M.C.T.R.V.); (P.C.S.)
| |
Collapse
|
2
|
Indla E, Rajasekar KV, Naveen Kumar B, Kumar SS, P UK, Sayana SB. Modulation of Oxidative Stress and Glycemic Control in Diabetic Wistar Rats: The Therapeutic Potential of Theobroma cacao and Camellia sinensis Diets. Cureus 2024; 16:e55985. [PMID: 38606255 PMCID: PMC11007453 DOI: 10.7759/cureus.55985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Background Diabetes mellitus is a complex metabolic disorder characterized by oxidative stress and impaired glycemic control. This study investigates the therapeutic potential of Theobroma cacao and Camellia sinensis diets in diabetic Wistar rats and assesses their impact on oxidative stress markers and blood glucose levels. Methods In this experiment, eight groups of six male Wistar rats (n = 12.5%), aged 8 to 12 weeks, were carefully set up to see how different treatments for diabetes and oxidative stress affected the two conditions. The random selection process was implemented to minimize any potential bias and ensure that the results of the study would be representative of the general population of Wistar rats. The groups were as follows: a nondiabetic control group (NDC) served as the baseline, while diabetes was induced in the alloxan monohydrate group (150 mg/kg). Another group was given the standard drug metformin (M, 100 mg/kg), and two control groups that did not have diabetes were given extracts of Theobroma cacao (TC, 340 mg/kg) and Camellia sinensis (CS, 200 mg/kg). Three groups of diabetic rats were given a mix of these treatments. Theobroma cacao and Camellia sinensis extracts were given at set doses (TC, 340 mg/kg; CS, 200 mg/kg), along with 150 mg/kg of a drug that causes diabetes. Over a 21-day period, oxidative stress parameters such as glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione reductase (GSHrd) levels, and blood glucose were carefully measured to check for signs of oxidative stress and diabetes progression Results Considerable differences in GSH levels were noted across the groups, with the highest GSH concentration found in the group treated with the inducing drug, while the lowest GSH levels were observed in the diabetic group that was administered both Theobroma cacao and Camellia sinensis (p < 0.001). MDA levels also varied, with the diabetic group treated with Theobroma cacao having the highest MDA concentration (3.54 ± 0.29 μmol/L) and the nondiabetic control group treated with Camellia sinensis exhibiting the lowest MDA levels (1.66 ± 0.08 μmol/L; p < 0.001). SOD activity was highest in the standard drug group and lowest in the diabetic group treated with Theobroma cacao. GSH activity was notably higher in the diabetic groups that received dietary interventions (p < 0.001). Blood glucose levels showed diverse responses, with the standard drug group experiencing a substantial reduction, while the inducing drug group exhibited a consistent increase. Conclusion The study highlights the significant impact of dietary interventions with Theobroma cacao and Camellia sinensis on oxidative stress markers and blood glucose regulation in diabetic Wistar rats. These findings suggest a potential role for these dietary components in mitigating oxidative stress and improving glycemic control in diabetes, although further research is warranted to elucidate the underlying mechanisms and clinical implications.
Collapse
Affiliation(s)
- Edward Indla
- Department of Anatomy, Meenakshi Academy of Higher Education and Research, Chennai, IND
| | - K V Rajasekar
- Department of Radiology, Meenakshi Medical College Hospital and Research Institute, Chennai, IND
| | | | - S Saravana Kumar
- Department of Anatomy, Meenakshi Medical College Hospital and Research Institute, Chennai, IND
| | - Udaya Kumar P
- Department of Anatomy, Mamata Medical College, Khammam, IND
| | - Suresh Babu Sayana
- Department of Pharmacology, Government Medical College and General Hospital, Suryapet, IND
| |
Collapse
|
3
|
Cortez D, Quispe-Sanchez L, Mestanza M, Oliva M, Yoplac I, Torres C, Chavez SG. Changes in bioactive compounds during fermentation of cocoa (Theobroma cacao) harvested in Amazonas-Peru. Curr Res Food Sci 2023; 6:100494. [PMID: 37095830 PMCID: PMC10121394 DOI: 10.1016/j.crfs.2023.100494] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Cocoa (Theobroma cacao) is the main raw material for the production of chocolate; it is considered the food of the gods, as it possesses a diversity of bioactive compounds beneficial to human health. The abundance of bioactive compounds, among others, is conditioned by the post-harvest processing of cocoa beans, and fermentation is a major step in this regard. Consequently, this research evaluated the changes in phenolic compounds and methylxanthines occurred in the fermentation of Criollo and CCN-51 cocoa beans, varieties of great commercial interest for the cocoa-growing areas of Peru. For this purpose, samples were taken every 12 h of cocoa beans under fermentation for 204 h in which phenols (gallic acid, caffeic acid, catechin, and epicatechin) and methylxanthines (theobromine, caffeine and theophylline) were quantified by ultra-high performance liquid chromatography (UHPLC); total polyphenols by Folin Ciocalteu; antioxidant capacity by DPPH free radical capture method; total anthocyanins; pH; titratable acidity; and fermentation rate of beans. We found that during fermentation, phenolic content, antioxidant activity, and methylxanthines of cocoa beans decreased; on the other hand, the anthocyanin content increased slightly. Indeed, at distinctly degree, fermentation influences bioactive compounds in cocoa beans, depending on the variety cultivated.
Collapse
|
4
|
Jiang Z, Han Z, Zhu M, Wan X, Zhang L. Effects of thermal processing on transformation of polyphenols and flavor quality. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
5
|
Hernandez CE, Granados L. Quality differentiation of cocoa beans: implications for geographical indications. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3993-4002. [PMID: 33421139 DOI: 10.1002/jsfa.11077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/03/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Geographical indications may stimulate collective actions of governance for quality control, trade and marketing as well as innovation based on the use of local resources and regional biodiversity. Cocoa production, however, dominated by small family agriculture in tropical regions, has rarely made use of such strategies. This review is aimed at understanding major research interests and emerging technologies helpful for the origin differentiation of cocoa quality. Results from literature search and cited references of publications on cocoa research were imported into VOSviewer for data analysis, which aided in visualizing major research hotpots. Co-occurrence analysis yielded major research clusters which guided the discussion of this review. Observed was a consensus recognizing cocoa quality resulting from the interaction of genotype, fermentation variables and geographical origin. A classic view of cocoa genetics based on the dichotomy of 'fine versus bulk' has been reexamined by a broader perspective of human selection and cocoa genotype evolution. This new approach to cocoa genetic diversity, together with the understanding of complex microbiome interactions through fermentation, as well as quality reproducibility challenged by geographical conditions, have demonstrated the importance of terroir in the production of special attributes. Cocoa growing communities around the tropics have been clearly enabled by new omics and chemometrics to systematize producing conditions and practices in the designation of specifications for the differentiation of origin quality. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carlos Eduardo Hernandez
- Laboratory of Food Quality Innovation, School of Agricultural Sciences, National University (UNA), Heredia, Costa Rica
| | - Leonardo Granados
- Center for the Development of Denominations of Origin and Agrifood Quality (CADENAGRO), School of Agricultural Sciences, National University (UNA), Heredia, Costa Rica
| |
Collapse
|
6
|
Gil M, Uribe D, Gallego V, Bedoya C, Arango-Varela S. Traceability of polyphenols in cocoa during the postharvest and industrialization processes and their biological antioxidant potential. Heliyon 2021; 7:e07738. [PMID: 34458602 PMCID: PMC8377438 DOI: 10.1016/j.heliyon.2021.e07738] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/26/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
Noncommunicable diseases, the leading cause of mortality around the world, are responsible for approximately 75% of premature adult deaths (ages 30-69). To tackle this issue, a healthy diet based on functional foods, including cocoa and its derivatives, has been increasingly promoted. The polyphenols present in cocoa have been of interest due to their antioxidant potential and their possible protective role in the context of noncommunicable diseases, such as diabetes and cardiovascular conditions. However, during cocoa postharvest and industrialization, the concentration of these bioactive compounds is reduced, possibly affecting their health-promoting properties. Therefore, this paper reviews in the literature in this field to find the total polyphenol content in cocoa during the postharvest and industrialization processes in order to define concentration ranges as a reference point for future research. In addition, it discusses in vitro and in vivo studies into the biological antioxidant potential of cocoa and its derivatives. This review covers publications in indexed databases from 2010 to 2020, their data were processed and presented here using box plots. As a result, we identified the concentration ranges of polyphenols depending on the type of matrix, treatment and country, as well as their relationship with the main bioactive compounds present in cocoa that are associated with their possible antioxidant biological potential and health-related benefits.
Collapse
Affiliation(s)
- Maritza Gil
- Universidad Nacional de Colombia, Facultad de Ciencias Agrarias (Medellín-Antioquia Colombia), Colombia
- Grupo de investigación de Química Básica, Aplicada y Ambiente, ALQUIMIA, Colombia
- Faculty of Exact and Applied Sciences, Instituto Tecnológico Metropolitano, Colombia
- Grupo de investigación de Ingeniería de Alimentos, GRIAL, Colombia
| | - Diego Uribe
- Faculty of Exact and Applied Sciences, Instituto Tecnológico Metropolitano, Colombia
- Grupo de investigación e Innovación Biomédica, GI2B, Colombia
| | - Vanessa Gallego
- Grupo de investigación de Ingeniería de Alimentos, GRIAL, Colombia
| | - Carolina Bedoya
- Grupo de investigación de Ingeniería de Alimentos, GRIAL, Colombia
- Corporación Universitaria Lasallista, Caldas, Antioquia, Colombia
| | - Sandra Arango-Varela
- Faculty of Exact and Applied Sciences, Instituto Tecnológico Metropolitano, Colombia
- Grupo de investigación e Innovación Biomédica, GI2B, Colombia
| |
Collapse
|
7
|
Febrianto NA, Wang S, Zhu F. Chemical and biological properties of cocoa beans affected by processing: a review. Crit Rev Food Sci Nutr 2021; 62:8403-8434. [PMID: 34047627 DOI: 10.1080/10408398.2021.1928597] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cocoa (Theobroma cacao L.) is widely cultivated in tropical countries. The cocoa beans are a popular ingredient of confectionery. Cocoa beans contain various chemicals that contribute to their bioactivity and nutritional properties. There has been increasing interest in developing cocoa beans for "healthy" food products. Cocoa beans have special combination of nutrients such as lipids, carbohydrates, proteins and other compounds of biological activities. The bioactive phytochemicals include methylxanthines, polyphenols, biogenic amines, melanoidins, isoprostanoids and oxalates. These phytochemicals of cocoa are related to various in vivo and in vitro biological activities such as antioxidation, anti-cancer, anti-microbial, anti-inflammation, anti-diabetes, cardiovascular protection, physical improvement, anti-photoaging, anti-depression and blood glucose regulation. The potential of bioactive compounds in cocoa remains to be maximized for food and nutritional applications. The current processing technology promotes the degradation of beneficial bioactive compounds, while maximizing the flavors and its precursors. It is not optimized for the utilization of cocoa beans for "healthy" product formulations. Modifications of the current processing line and non-conventional processing are needed to better preserve and utilize the beneficial bioactive compounds in cocoa beans.
Collapse
Affiliation(s)
- Noor Ariefandie Febrianto
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Indonesian Coffee and Cocoa Research Institute (ICCRI), Jember, East Java, Indonesia
| | - Sunan Wang
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Canadian Food and Wine Institute, Niagara College, Ontario, Canada
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Urbańska B, Kowalska H, Szulc K, Ziarno M, Pochitskaya I, Kowalska J. Comparison of the Effects of Conching Parameters on the Contents of Three Dominant Flavan3-ols, Rheological Properties and Sensory Quality in Chocolate Milk Mass Based on Liquor from Unroasted Cocoa Beans. Molecules 2021; 26:molecules26092502. [PMID: 33922933 PMCID: PMC8123309 DOI: 10.3390/molecules26092502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
The content of polyphenols in chocolate depends on many factors related to the properties of raw material and manufacturing parameters. The trend toward developing chocolates made from unroasted cocoa beans encourages research in this area. In addition, modern customers attach great importance to how the food they consume benefits their bodies. One such benefit that consumers value is the preservation of natural antioxidant compounds in food products (e.g., polyphenols). Therefore, in our study we attempted to determine the relationship between variable parameters at the conching stage (i.e., temperature and time of) and the content of dominant polyphenols (i.e.,catechins, epicatechins, and procyanidin B2) in chocolate milk mass (CMM) obtained from unroasted cocoa beans. Increasing the conching temperature from 50 to 60 °C decreased the content of three basic flavan-3-ols. The highest number of these compounds was determined when the process was carried out at 50 °C. However, the time that caused the least degradation of these compounds differed. For catechin, it was 2 h; for epicatechin it was 1 h; and for procyanidin it was 3 h. The influence of both the temperature and conching time on the rheological properties of chocolate milk mass was demonstrated. At 50 °C, the viscosity and the yield stress of the conched mass showed its highest value.
Collapse
Affiliation(s)
- Bogumiła Urbańska
- Department of Technology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (M.Z.); (J.K.)
- Correspondence:
| | - Hanna Kowalska
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (H.K.); (K.S.)
| | - Karolina Szulc
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (H.K.); (K.S.)
| | - Małgorzata Ziarno
- Department of Technology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (M.Z.); (J.K.)
| | - Irina Pochitskaya
- The Scientific and Practical Centre for Foodstuffs of the National Academy of Sciences of Belarus, 29. Kozlova St., 220037 Minsk, Belarus;
| | - Jolanta Kowalska
- Department of Technology and Food Evaluation, Institute of Food Sciences, Warsaw University of Life Sciences, 159c Nowoursynowska St., 02-776 Warsaw, Poland; (M.Z.); (J.K.)
| |
Collapse
|
9
|
Protective Effects of a Strawberry Ellagitannin-Rich Extract against Pro-Oxidative and Pro-Inflammatory Dysfunctions Induced by a High-Fat Diet in a Rat Model. Molecules 2020; 25:molecules25245874. [PMID: 33322602 PMCID: PMC7763312 DOI: 10.3390/molecules25245874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Due to the demonstrated intestinal microbial transformation of strawberry ellagitannins (ET) into bioactive metabolites, in the current study on rats, we hypothesised that the dietary addition of a strawberry ET-rich extract (S-ET) to a high-fat diet (HFD) would attenuate disturbances in the redox and lipid status as well as in the inflammatory response. We randomly distributed 48 Wistar rats into six groups and used two-way analysis of variance (ANOVA) to assess the effects of two main factors—diet type (standard and high-fat) and ET dosage (without, low, and 3× higher)—applied to rats for 4 weeks. In relation to the hypothesis, irrespective of the dosage, the dietary application of ET resulted in the desired attenuating effects in rats fed a HFD as manifested by decreased body weight gain, relative mass of the epididymal pad, hepatic fat, oxidized glutathione (GSSG), triglycerides (TG), total cholesterol (TC), and thiobarbituric acid-reactive substances (TBARS) concentrations as well as desired modifications in the blood plasma parameters. These beneficial changes were enhanced by the high dietary addition of ET, which was associated with considerably higher concentrations of ET metabolites in the urine and plasma of rats. The results indicated that S-ET could be effectively used for the prevention and treatment of metabolic disturbances associated with obesity, dyslipidaemia, redox status imbalance, and inflammation.
Collapse
|