1
|
Pelpolage SW, Kobayashi H, Fukuma N, Hoshizawa M, Hamamoto T, Han KH, Fukushima M. Temporal changes in the fermentation characteristics, bacterial community structure and the functionality of the predicted metagenome of a batch fermenter medium containing the upper gastrointestinal enzyme resistant fraction of white sorghum (Sorghum bicolor L. Moench). Food Chem 2024; 448:139102. [PMID: 38593566 DOI: 10.1016/j.foodchem.2024.139102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Sorghum is a potential prebiotic ascribed to the high native resistant starch (RS) content. Our previous studies on raw sorghum have revealed prominent amino acid fermentation despite the high RS content. Interestingly, autoclaved-freeze-dried sorghum fed rats exhibited beneficial microbial and biochemical profiles. Having a keen interest to reciprocally scrutinize the underlying mechanisms behind these contrasting outcomes, we used an in vitro porcine batch fermentation model. The fermentable substrates in raw and autoclaved-freeze-dried (three cycles) sorghum (AC) after in vitro gastrointestinal digestion fostered similar bacterial community structures, yet with significant differences in the characteristic amylolytic microbial taxa abundance and their temporal variation. Further, significant differences in the concentration of organic acids in raw and AC manifested the differences in the predicted abundance of the underlying pathways of carbohydrate and organic acid metabolism. Thus, this study highlights the propensity of the heat-moisture treatment of sorghum in modifying the fermentability of its RS.
Collapse
Affiliation(s)
- Samanthi W Pelpolage
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, West 2-11, Inada, Obihiro 080-8555, Hokkaido, Japan.
| | - Haruhi Kobayashi
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, West 2-11, Inada, Obihiro 080-8555, Hokkaido, Japan.
| | - Naoki Fukuma
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, West 2-11, Inada, Obihiro 080-8555, Hokkaido, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, West 2-11, Inada, Obihiro 080-8555., Hokkaido, Japan.
| | - Michiyo Hoshizawa
- U.S. Grains Council, 11th Floor, Toranomon Denki Building No.3, 1-2-20 Toranomon, Minato-ku, Tokyo 105-0001, Japan.
| | - Tetsuo Hamamoto
- U.S. Grains Council, 11th Floor, Toranomon Denki Building No.3, 1-2-20 Toranomon, Minato-ku, Tokyo 105-0001, Japan.
| | - Kyu-Ho Han
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, West 2-11, Inada, Obihiro 080-8555, Hokkaido, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, West 2-11, Inada, Obihiro 080-8555., Hokkaido, Japan.
| | - Michihiro Fukushima
- Department of Life and Food Sciences, Obihiro University of Agriculture and Veterinary Medicine, West 2-11, Inada, Obihiro 080-8555, Hokkaido, Japan.
| |
Collapse
|
2
|
Yoshida R, Yano Y, Hoshi N, Okamoto N, Sui Y, Yamamoto A, Asaji N, Shiomi Y, Yasutomi E, Hatazawa Y, Hayashi H, Ueda Y, Kodama Y. Acid-treated high-amylose corn starch suppresses high-fat diet-induced steatosis. J Food Sci 2022; 87:2173-2184. [PMID: 35411589 DOI: 10.1111/1750-3841.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/17/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
Resistant starch (RS) has been reported to improve steatosis as well as obesity. Type 4 resistant starch (RS4), a chemically modified starch, is particularly hard to digest and suggesting higher efficacy. However, because the effects of RS4 on steatosis are not yet fully understood, the effects of RS4 on steatosis were examined using a murine high-fat diet model. Seven-week-old male mice were divided into three groups and fed a normal diet, a high-fat diet (HFD), or a high-fat diet with added RS (HFD + RS). Amylofiber SH® produced from acid-treated corn starch was used as the dietary RS. At 22 weeks old, hepatic steatosis and short chain fatty acid (SCFA) content and gut microbiota in cecum stool samples were analyzed. The ratio of body weight to 7 weeks was significantly suppressed in the HFD + RS group compared to the HFD group (132.2 ± 1.4% vs. 167.2 ± 3.9%, p = 0.0076). Macroscopic and microscopic steatosis was also suppressed in the HFD + RS group. Analysis of cecum stool samples revealed elevated SCFA levels in the HFD + RS group compared with the HFD group. Metagenome analysis revealed that Bifidobacterium (17.9 ± 1.9% vs. 3.6 ± 0.7%, p = 0.0019) and Lactobacillus (14.8 ± 3.4% vs. 0.72 ± 0.23%, p = 0.0045), which degrade RS to SCFA, were more prevalent in the HFD + RS group than the HFD group. In conclusion, RS4 suppressed steatosis, and increased Bifidobacterium and Lactobacillus, and SCFAs. RS4 may prevent steatosis by modulating the intestinal environment.
Collapse
Affiliation(s)
- Ryutaro Yoshida
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Yoshihiko Yano
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Namiko Hoshi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Norihiro Okamoto
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Yunlong Sui
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Atsushi Yamamoto
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Naoki Asaji
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Yuuki Shiomi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Eiichiro Yasutomi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Yuri Hatazawa
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Hiroki Hayashi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Yoshihide Ueda
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine
| |
Collapse
|
3
|
Taylor JRN, Duodu KG. Resistant‐Type Starch in Sorghum Foods – Factors Involved and Health Implications. STARCH-STARKE 2022. [DOI: 10.1002/star.202100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- John R. N. Taylor
- Department of Consumer and Food Sciences University of Pretoria Pretoria South Africa
| | - Kwaku G. Duodu
- Department of Consumer and Food Sciences University of Pretoria Pretoria South Africa
| |
Collapse
|