1
|
Brazaitis M, Židonienė K, Eimantas N, Solianik R. Six-Day Fasting Causes Temporary Increases in Both Antioxidant Capacity and Oxidative Stress in Healthy Young Men: A Randomized Controlled Trial. Antioxidants (Basel) 2025; 14:269. [PMID: 40227222 PMCID: PMC11939693 DOI: 10.3390/antiox14030269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 04/15/2025] Open
Abstract
The impact of prolonged fasting on human oxidative stress (OS) levels and antioxidant defence mechanisms remains poorly understood. The aim of this current study was to investigate the redox response to a 6-day fast in a cohort of healthy men. Twenty-six participants were randomly allocated to a 6-day complete fasting or a control trial. Sympathetic activity, substrate oxidation, redox status, blood glucose, ketones, and testosterone concentrations were assessed. Throughout the fasting period, ketone concentration and fat oxidation increased, and carbohydrate oxidation and glucose and testosterone concentrations decreased. Heart rate increased on fasting days 2 and 4 and returned to the pre-fasting level on fasting day 6. Malondialdehyde (MDA) concentration increased after fasting days 4 and 6, and this increase was accompanied by an increase in the total antioxidant capacity (TAC), but the TAC/MDA ratio remained constant. Notably, all fasting-evoked changes returned to the baseline values after resumption of the regular diet. Thus, prolonged fasting activated both antioxidant defence and OS, but the redox balance was maintained. Consistent with this response, ketone concentration and sympathetic nervous system activity increased, and testosterone concentration decreased. These variables returned to the pre-fasting state after resumption of the usual eating habits.
Collapse
Affiliation(s)
| | | | | | - Rima Solianik
- Institute of Sport Science and Innovations, Lithuanian Sports University, 44221 Kaunas, Lithuania; (M.B.); (K.Ž.); (N.E.)
| |
Collapse
|
2
|
Zhang S, Lv Y, Qian J, Wei W, Zhu Y, Liu Y, Li L, Zhao C, Gao X, Yang Y, Dong J, Gu Y, Chen Y, Sun Q, Jiao X, Lu J, Yan Z, Wang L, Yuan N, Fang Y, Wang J. Adaptive metabolic response to short-term intensive fasting. Clin Nutr 2024; 43:453-467. [PMID: 38181523 DOI: 10.1016/j.clnu.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/19/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND & AIMS Short-term intensive fasting (STIF), known as beego in Chinese phonetic articulation, has been practiced for more than two thousand years. However, the potential risk of STIF and the body's response to the risk have not been adequately evaluated. This study aims to address this issue, focusing on the STIF-triggered metabolic response of the liver and kidney. METHODS The STIF procedure in the clinical trial includes a 7-day water-only intensive fasting phase and a 7-day gradual refeeding phase followed by a regular diet. The intensive fasting in humans was assisted with psychological induction. To gain insights not available in the clinical trial, we designed a STIF program for mice that resulted in similar phenotypes seen in humans. Plasma metabolic profiling and examination of gene expression as well as liver and kidney function were performed by omics, molecular, biochemical and flow cytometric analyses. A human cell line model was also used for mechanistic study. RESULTS Clinically significant metabolites of fat and protein were found to accumulate during the fasting phase, but they were relieved after gradual refeeding. Metabolomics profiling revealed a universal pattern in the consumption of metabolic intermediates, in which pyruvate and succinate are the two key metabolites during STIF. In the STIF mouse model, the accumulation of metabolites was mostly counteracted by the upregulation of catabolic enzymes in the liver, which was validated in a human cell model. Kidney filtration function was partially affected by STIF but could be recovered by refeeding. STIF also reduced oxidative and inflammatory levels in the liver and kidney. Moreover, STIF improved lipid metabolism in mice with fatty liver without causing accumulation of metabolites after STIF. CONCLUSIONS The accumulation of metabolites induced by STIF can be relieved by spontaneous upregulation of catabolic enzymes, suggesting an adaptive and protective metabolic response to STIF stress in the mammalian body.
Collapse
Affiliation(s)
- Suping Zhang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Suzhou Center for Disease Control and Prevention, Suzhou 215004, China
| | - Yaqi Lv
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Jiawei Qian
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Wen Wei
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China
| | - Yanfei Zhu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yuqing Liu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Lei Li
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China
| | - Chen Zhao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China
| | - Xueqin Gao
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yanjun Yang
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Jin Dong
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yue Gu
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yuwei Chen
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Qiyuan Sun
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Xuehua Jiao
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Jie Lu
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Zhanjun Yan
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China
| | - Li Wang
- Department of Community Nursing, School of Nursing, Soochow University, Suzhou 215006, China
| | - Na Yuan
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China.
| | - Yixuan Fang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China.
| | - Jianrong Wang
- Research Center for Blood Engineering and Manufacturing, Cyrus Tang Medical Institute, National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Susky Life SciTech (Suzhou) Inc., Suzhou 215101, China; Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215200, China.
| |
Collapse
|
3
|
Stec K, Pilis K, Pilis W, Dolibog P, Letkiewicz S, Głębocka A. Effects of Fasting on the Physiological and Psychological Responses in Middle-Aged Men. Nutrients 2023; 15:3444. [PMID: 37571381 PMCID: PMC10421233 DOI: 10.3390/nu15153444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Tracking changes in the body during fasting takes into account indicators of mental well-being and physiological parameters. The aim of the study was to measure psychological and physiological reactions, along with their mutual relations, caused by 8 days of water-only fasting. Fourteen men aged 35 to 60 participated in the study, divided into two groups, younger and elder. In addition to physiological parameters, psychological data were collected using four different tests. The obtained results confirmed reduction in body weight, systolic blood pressure, resting diastolic blood pressure and glucose level, and increase in resting heart rate, cortisol and β-hydroxybutyrate concentration. However, no significant psychological changes were observed under the influence of fasting intervention. A significant interaction effect occurred for the state anxiety variable determined before and after the fasting intervention for both groups. Moreover, negative correlations between physiological (cortisol) and psychological factors of subjectively assessed stress were revealed. The only effect on cognitive ability was seen when responding to simple tasks. The study confirmed the beneficial effect of 8 days of water-only fasting on physiological variables without affecting mental well-being. The relatively high level of well-being after fasting intervention was independent of the physiological indicators of stress.
Collapse
Affiliation(s)
- Krzysztof Stec
- Collegium Medicum, Jan Dlugosz University in Czestochowa, ul. Waszyngtona 4/8, 42-200 Częstochowa, Poland; (K.S.); (W.P.); (S.L.)
| | - Karol Pilis
- Collegium Medicum, Jan Dlugosz University in Czestochowa, ul. Waszyngtona 4/8, 42-200 Częstochowa, Poland; (K.S.); (W.P.); (S.L.)
| | - Wiesław Pilis
- Collegium Medicum, Jan Dlugosz University in Czestochowa, ul. Waszyngtona 4/8, 42-200 Częstochowa, Poland; (K.S.); (W.P.); (S.L.)
| | - Paweł Dolibog
- Department of Biophysics, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-752 Katowice, Poland;
- Institute of Health Sciences, University of Opole, 45-401 Opole, Poland
| | - Sławomir Letkiewicz
- Collegium Medicum, Jan Dlugosz University in Czestochowa, ul. Waszyngtona 4/8, 42-200 Częstochowa, Poland; (K.S.); (W.P.); (S.L.)
| | - Alicja Głębocka
- Department of Economy in Opole, WSB Merito University in Wroclaw, 53-609 Wroclaw, Poland;
| |
Collapse
|
4
|
Liu CP, Chen ZD, Ye ZY, He DY, Dang Y, Li ZW, Wang L, Ren M, Fan ZJ, Liu HX. Therapeutic Applications of Functional Nanomaterials for Prostatitis. Front Pharmacol 2021; 12:685465. [PMID: 34140892 PMCID: PMC8205439 DOI: 10.3389/fphar.2021.685465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/10/2021] [Indexed: 01/02/2023] Open
Abstract
Prostatitis is a common disease in adult males, with characteristics of a poor treatment response and easy recurrence, which seriously affects the patient's quality of life. The prostate is located deep in the pelvic cavity, and thus a traditional infusion or other treatment methods are unable to easily act directly on the prostate, leading to poor therapeutic effects. Therefore, the development of new diagnostic and treatment strategies has become a research hotspot in the field of prostatitis treatment. In recent years, nanomaterials have been widely used in the diagnosis and treatment of various infectious diseases. Nanotechnology is a promising tool for 1) the accurate diagnosis of diseases; 2) improving the targeting of drug delivery systems; 3) intelligent, controlled drug release; and 4) multimode collaborative treatment, which is expected to be applied in the diagnosis and treatment of prostatitis. Nanotechnology is attracting attention in the diagnosis, prevention and treatment of prostatitis. However, as a new research area, systematic reviews on the application of nanomaterials in the diagnosis and treatment of prostatitis are still lacking. In this mini-review, we will highlight the treatment approaches for and challenges associated with prostatitis and describe the advantages of functional nanoparticles in improving treatment effectiveness and overcoming side effects.
Collapse
Affiliation(s)
- Chun-Ping Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zi-De Chen
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Zi-Yan Ye
- Department of Interventional Radiology, Cancer Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, South China University of Technology, Guangzhou, China
| | - Dong-Yue He
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Dang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhe-Wei Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lei Wang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Miao Ren
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhi-Jin Fan
- Guangdong Provincial People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Hong-Xing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Liu CP, Chen ZD, Ye ZY, He DY, Dang Y, Li ZW, Wang L, Ren M, Fan ZJ, Liu HX. Therapeutic Applications of Functional Nanomaterials for Prostatitis. Front Pharmacol 2021. [DOI: 10.3389/fphar.2021.685465
expr 881861845 + 830625731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Prostatitis is a common disease in adult males, with characteristics of a poor treatment response and easy recurrence, which seriously affects the patient’s quality of life. The prostate is located deep in the pelvic cavity, and thus a traditional infusion or other treatment methods are unable to easily act directly on the prostate, leading to poor therapeutic effects. Therefore, the development of new diagnostic and treatment strategies has become a research hotspot in the field of prostatitis treatment. In recent years, nanomaterials have been widely used in the diagnosis and treatment of various infectious diseases. Nanotechnology is a promising tool for 1) the accurate diagnosis of diseases; 2) improving the targeting of drug delivery systems; 3) intelligent, controlled drug release; and 4) multimode collaborative treatment, which is expected to be applied in the diagnosis and treatment of prostatitis. Nanotechnology is attracting attention in the diagnosis, prevention and treatment of prostatitis. However, as a new research area, systematic reviews on the application of nanomaterials in the diagnosis and treatment of prostatitis are still lacking. In this mini-review, we will highlight the treatment approaches for and challenges associated with prostatitis and describe the advantages of functional nanoparticles in improving treatment effectiveness and overcoming side effects.
Collapse
|