1
|
de Afonso Bonotto NC, da Cruz IBM, Turra BO, Escher ALK, Dos Santos Trombini F, Zimmermann JAB, Azzolin VF, Pillat MM, Ribeiro-Filho EE, Barbisan F. The mitochondrial and cytoplasmic superoxide anion imbalance trigger the expression of certain cellular aging markers in HaCaT keratinocytes. Biogerontology 2024; 26:31. [PMID: 39725767 DOI: 10.1007/s10522-024-10168-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
In cells, the term "cellular aging" represents a collection of biological changes that can precede the proliferative senescence states. Cells more resistant to proliferative senescence, such as the ones found in the basal layer of the epidermis, may also exhibit these aging patterns. Therefore, cellular aging events could be induced by endogenous signals named here as cellular aging triggers (CATs) components. The superoxide anion (O2⁻) could be a prime candidate for a CATs, as it is continuously produced by eukaryotic cells. To test this hypothesis, mitochondrial and cytoplasmic O2⁻ imbalances were induced in HaCaT keratinocytes using rotenone (ROT, 30 µM), which inhibits mitochondrial complex I and paraquat (PQT, 30 µM), which increases O2⁻ levels via redox cycling. ROT and PQT reduced cellular proliferation rate and elevated β-Galactosidase and transforming growth factor beta (TGF-β) levels. Furthermore, they increased the frequency of larger cells with nuclear alterations, the levels of oxidative markers, and interleukin 1β, a marker of the Senescence-Associated Secretory Phenotype (SASP). However, the mitochondrial O2⁻ imbalance caused by ROT led to more pronounced alterations compared to PQT. These findings support the hypothesis that the existence of CAT components, such as the O2⁻ anion, plays a significant role in cellular aging.
Collapse
Affiliation(s)
- Nathalia Cardoso de Afonso Bonotto
- Postgraduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
- Biogenomics Laboratory, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Ivana Beatrice Mânica da Cruz
- Postgraduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil.
- Biogenomics Laboratory, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil.
- Postgraduate Program in Gerontology, Center for Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil.
| | - Bárbara Osmarin Turra
- Postgraduate Program in Gerontology, Center for Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil
- Center for Research, Teaching and Technological Development, Open University Foundation for the Third Age, Manaus, Brazil
| | - Ana Laura Kerkhoff Escher
- Biogenomics Laboratory, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Fernanda Dos Santos Trombini
- Biogenomics Laboratory, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
- Postgraduate Program in Nursing, Center for Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil
| | - João Arthur B Zimmermann
- Biogenomics Laboratory, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Verônica Farina Azzolin
- Center for Research, Teaching and Technological Development, Open University Foundation for the Third Age, Manaus, Brazil
| | - Micheli Mainardi Pillat
- Postgraduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Euler Esteves Ribeiro-Filho
- Center for Research, Teaching and Technological Development, Open University Foundation for the Third Age, Manaus, Brazil
| | - Fernanda Barbisan
- Postgraduate Program in Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
- Biogenomics Laboratory, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
- Postgraduate Program in Gerontology, Center for Physical Education and Sports, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
2
|
Olivero-Verbel J, Quintero-Rincón P, Caballero-Gallardo K. Aromatic plants as cosmeceuticals: benefits and applications for skin health. PLANTA 2024; 260:132. [PMID: 39500772 PMCID: PMC11538177 DOI: 10.1007/s00425-024-04550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
MAIN CONCLUSION This review highlights the potential of aromatic plants as natural antioxidants in cosmeceuticals to combat skin aging and promote health and rejuvenation. Aromatic plant extracts, essential oils, or their phytoconstituents have a long history of use in skincare, dating back centuries. Currently, these plant-based sources are extensively researched and utilized in the cosmeceutical industry to formulate products that enhance skin health and promote a youthful appearance. These plants' diverse bioactivities and sensory properties make them ideal ingredients for developing anti-aging agents recommended for maintaining healthy skin through self-care routines, offering a natural alternative to synthetic products. Reactive oxygen species (ROS) accumulation in the dermis, attributed to intrinsic and extrinsic aging factors, particularly prolonged sun exposure, is identified as the primary cause of skin aging. Plant extracts enriched with antioxidant compounds including flavonoids, phenolics, tannins, stilbenes, terpenes, and steroids, are fundamental to counteract ROS-induced oxidative stress. Noteworthy effects observed from the use of these natural sources include photoprotective, senolytic, anti-inflammatory, anti-wrinkle, anti-acne, and anti-tyrosinase activities, encompassing benefits like photoprotection, wound healing, skin whitening, anti-pigmentation, tissue regeneration, among others. This review highlights several globally distributed aromatic plant species renowned for their benefits for skin, including Foeniculum vulgare Mill. (Apiaceae), Calendula officinalis L. and Matricaria chamomilla L. (Asteraceae), Thymus vulgaris L. (Lamiaceae), Litsea cubeba (Lour.) Pers. (Lauraceae), Althaea officinalis L. (Malvaceae), Malaleuca alternifolia (Maiden y Betche) Cheel (Myrtaceae), Cymbopogon citratus (DC.) Stapf (Poaceae), Rubus idaeus L. (Rosaceae), and Citrus sinensis L. Osbeck (Rutaceae), emphasizing their potential in skincare formulations and their role in promoting health and rejuvenation.
Collapse
Affiliation(s)
- Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
| | - Patricia Quintero-Rincón
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia
- Research Group Design and Formulation of Medicines, Cosmetics, and Related, Faculty of Pharmaceutical and Food Sciences, Universidad de Antioquia, Medellín, 050010, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
- Functional Toxicology Group. School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena, 130014, Colombia.
| |
Collapse
|
3
|
Wang J, Gu L, Shi Z, Xu Z, Zhai X, Zhou S, Zhao J, Gu L, Chen L, Ju L, Zhou B, Hua H. 5-aminolevulinic acid photodynamic therapy protects against UVB-induced skin photoaging: A DNA-repairing mechanism involving the BER signalling pathway. J Cell Mol Med 2024; 28:e18536. [PMID: 39044341 PMCID: PMC11266122 DOI: 10.1111/jcmm.18536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
Low-dose 5-aminolevulinic acid photodynamic therapy (ALA-PDT) has been used to cope with skin photoaging, and is thought to involve DNA damage repair responses. However, it is still unknown how low-dose ALA-PDT regulates DNA damage repair to curb skin photoaging. We established a photoaging model using human dermal fibroblasts (HDFs) and rat skin. RNA-sequencing (RNA-seq) analysis was conducted to identify differentially expressed genes (DEGs) in HDFs before and after low-dose ALA-PDT treatment, followed by bioinformatics analysis. Senescence-associated β-galactosidase (SA-β-gal) staining was employed to assess skin aging-related manifestations and Western blotting to evaluate the expression of associated proteins. A comet assay was used to detect cellular DNA damage, while immunofluorescence to examine the expression of 8-hydroxy-2'-deoxyguanosine (8-oxo-dG) in cells and skin tissues. In both in vivo and in vitro models, low-dose ALA-PDT alleviated the manifestations of ultraviolet B (UVB)-induced skin photoaging. Low-dose ALA-PDT significantly reduced DNA damage in photoaged HDFs. Furthermore, low-dose ALA-PDT accelerated the clearance of the photoproduct 8-oxo-dG in photoaged HDFs and superficial dermis of photoaged rat skin. RNA-seq analysis suggested that low-dose ALA-PDT upregulated the expression of key genes in the base excision repair (BER) pathway. Further functional validation showed that inhibition on BER expression by using UPF1069 significantly suppressed SA-β-gal activity, G2/M phase ratio, expression of aging-associated proteins P16, P21, P53, and MUTYH proteins, as well as clearance of the photoproduct 8-oxo-dG in photoaged HDFs. Low-dose ALA-PDT exerts anti-photoaging effects by activating the BER signalling pathway.
Collapse
Affiliation(s)
- Jing Wang
- Department of Dermatology, Nantong Third People's HospitalAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Li Gu
- Department of Dermatology, Nantong Third People's HospitalAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
| | - Zhinan Shi
- Medical School of Nantong UniversityNantongChina
| | - Zhiyi Xu
- Department of Dermatology, Nantong Third People's HospitalAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Xiaoyu Zhai
- Department of Dermatology, Nantong Third People's HospitalAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
- Medical School of Nantong UniversityNantongChina
| | - Shu Zhou
- Department of Dermatology, Nantong Third People's HospitalAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
| | - Jingting Zhao
- Department of Dermatology, Nantong Third People's HospitalAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
| | - Liqun Gu
- Department of Dermatology, Nantong Third People's HospitalAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
| | - Lin Chen
- Nantong Institute of Liver Diseases, Nantong Third People's HospitalAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
| | - Linling Ju
- Nantong Institute of Liver Diseases, Nantong Third People's HospitalAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
| | - Bingrong Zhou
- Department of DermatologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Hui Hua
- Department of Dermatology, Nantong Third People's HospitalAffiliated Nantong Hospital 3 of Nantong UniversityNantongChina
| |
Collapse
|
4
|
Yue Z, Liu H, Liu M, Wang N, Ye L, Guo C, Zheng B. Cornus officinalis Extract Enriched with Ursolic Acid Ameliorates UVB-Induced Photoaging in Caenorhabditis elegans. Molecules 2024; 29:2718. [PMID: 38930783 PMCID: PMC11206114 DOI: 10.3390/molecules29122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Ultraviolet B (UVB) exposure can contribute to photoaging of skin. Cornus officinalis is rich in ursolic acid (UA), which is beneficial to the prevention of photoaging. Because UA is hardly soluble in water, the Cornus officinalis extract (COE) was obtained using water as the antisolvent to separate the components containing UA from the crude extract of Cornus officinalis. The effect of COE on UVB damage was assessed using Caenorhabditis elegans. The results showed that COE could increase the lifespan and enhance the antioxidant enzyme activity of C. elegans exposed to UVB while decreasing the reactive oxygen species (ROS) level. At the same time, COE upregulated the expression of antioxidant-related genes and promoted the migration of SKN-1 to the nucleus. Moreover, COE inhibited the expression of the skn-1 downstream gene and the extension of the lifespan in skn-1 mutants exposed to UVB, indicating that SKN-1 was required for COE to function. Our findings indicate that COE mainly ameliorates the oxidative stress caused by UVB in C. elegans via the SKN-1/Nrf2 pathway.
Collapse
Affiliation(s)
- Zengwang Yue
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.Y.); (M.L.); (L.Y.)
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China; (H.L.); (N.W.)
| | - Han Liu
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China; (H.L.); (N.W.)
| | - Manqiu Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.Y.); (M.L.); (L.Y.)
| | - Ning Wang
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China; (H.L.); (N.W.)
| | - Lin Ye
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.Y.); (M.L.); (L.Y.)
| | - Chaowan Guo
- Research and Development Center, Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China; (H.L.); (N.W.)
| | - Bisheng Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; (Z.Y.); (M.L.); (L.Y.)
| |
Collapse
|
5
|
Wang B, Dong J, Yang F, Ju T, Li J, Wang J, Wang Y, Crabbe MJC, Tian Y, Wang Z. Use of Atomic Force Microscopy in UVB-Induced Chromosome Damage Provides Important Bioinformation for Cell Damage Assessment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13212-13221. [PMID: 37681704 DOI: 10.1021/acs.langmuir.3c01644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The chromosomal structure derived from UVB-stimulated HaCaT cells was detected by atomic force microscopy (AFM) to evaluate the effect of UVB irradiation. The results showed that the higher the UVB irradiation dose, the more the cells that had chromosome aberration. At the same time, different representative types of chromosome structural aberrations were investigated. We also revealed damage to both DNA and cells under the corresponding irradiation doses. It was found that the degree of DNA damage was directly proportional to the irradiation dose. The mechanical properties of cells were also changed after UVB irradiation, suggesting that cells experienced a series of chain reactions from inside to outside after irradiation. The high-resolution imaging of chromosome structures by AFM after UVB irradiation enables us to relate the damage between chromosomes, DNA, and cells caused by UVB irradiation and provides specific information on genetic effects.
Collapse
Affiliation(s)
- Bowei Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Jianjun Dong
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Fan Yang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Tuoyu Ju
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Jiani Li
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Junxi Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - Ying Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
| | - M James C Crabbe
- Wolfson College, University of Oxford, Oxford OX2 6UD, U.K
- Institute of Biomedical and Environmental Science & Technology, and Institute for Research in Applicable Computing, University of Bedfordshire, Luton LU1 3JU, U.K
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China
- Centre for Opto/Bio-Nano Measurement and Manufacturing, Zhongshan Institute of Changchun University of Science and Technology, Zhongshan 528437, China
- Institute of Biomedical and Environmental Science & Technology, and Institute for Research in Applicable Computing, University of Bedfordshire, Luton LU1 3JU, U.K
| |
Collapse
|
6
|
Ahmed HM, Mohan Al-Zubaidy A, Othman-Qadir G. Biological investigations on macro-morphological characteristics, polyphenolic acids, antioxidant activity of Perilla frutescens (L) Britt. grown under open field. Saudi J Biol Sci 2022; 29:3213-3222. [PMID: 35844372 PMCID: PMC9280211 DOI: 10.1016/j.sjbs.2022.01.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/26/2022] Open
Abstract
Perilla frutescens, perilla is a functional food, spice and medicinal herb and ornamental plant in the family of Lamiaceae. Thus, macro-morphological characteristics, phenolic acids, antioxidants of twelve accessions of P. frutescens grown under open field were studied. High polymorphism was found among the perilla accessions and macroscopic features of perilla genotypes showed variable results. Perilla can be classified into two clearly phenotypes green and purple, within these two other colours were appeared. A good level of biomass production was recorded for JTD3, 203P, PS2, 203P respectively. Principal component analysis was performed to cluster phenolic acids. GB phenotype exhibited the major content of polyphenols, followed by JTD3 then J1. Regarding antioxidant capacity, JTD3 showed the highest value followed by 203P and GB respectively. The HPLC analysis showed that the most abundant phenolic acids were ellagic acid which is accumulated in a higher percentage in NP606, 588P and JTD3 cultivars respectively, followed by salicylic acid and gallic acid. This is the first report of cultivation of various Perilla varieties under open field environmental conditions, not only to increase productivity but also to improve the quality. Therefore, the present study results confirm the importance of the Perilla species for human consumption, therapeutic and ornamental purposes.
Collapse
|
7
|
Chamcheu JC, Walker AL, Noubissi FK. Natural and Synthetic Bioactives for Skin Health, Disease and Management. Nutrients 2021; 13:nu13124383. [PMID: 34959935 PMCID: PMC8705709 DOI: 10.3390/nu13124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana, Monroe, LA 71209-0497, USA
- Correspondence: (J.C.C.); (A.L.W.); (F.K.N.)
| | - Anthony Lynn. Walker
- School of Clinical Sciences, College of Pharmacy, University of Louisiana, Monroe, LA 71209-0497, USA
- Correspondence: (J.C.C.); (A.L.W.); (F.K.N.)
| | - Felicite Kamdem Noubissi
- Department of Biology, Jackson State University, Jackson, MS 39217, USA
- Correspondence: (J.C.C.); (A.L.W.); (F.K.N.)
| |
Collapse
|
8
|
Lin Z, Huang S, LingHu X, Wang Y, Wang B, Zhong S, Xie S, Xu X, Yu A, Nagai A, Kobayashi Y, Wa Q, Huang S. Perillaldehyde inhibits bone metastasis and receptor activator of nuclear factor-κB ligand (RANKL) signaling-induced osteoclastogenesis in prostate cancer cell lines. Bioengineered 2021; 13:2710-2719. [PMID: 34738877 PMCID: PMC8973720 DOI: 10.1080/21655979.2021.2001237] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Perillaldehyde (PAH), one of the active ingredients of the traditional Chinese medicine (TCM) plant Perilla frutescens, is widely used and exerts crucial anti-cancer activities. The aim of current study is to illustrate the potential mechanisms of PAH-mediated regulation of bone metastasis and osteoclastogenesis in prostate cancer (PCa) cell lines. Effects of PAH on proliferation, invasion and migration of PC-3 cells were assessed with the Cell Counting Kit-8 (CCK-8) assay and Transwell assays, respectively. Effects of PAH on stem cell characteristics of PC-3 cells were evaluated by cell-matrix adhesion assay, colony formation assay, spheroid formation assay, as well as western blot . The anti-metastasis and anti-osteoclastogenesis activity of PAH in RAW264.7 cells was examined by osteoclast differentiation assay and western blot. The protein levels of CD133 and CD44 in PC-3 cells and the activity of nuclear factor kappa B (NF-κB) signaling pathway in RAW264.7 cells were measured by western blot. PAH suppressed proliferation, invasion and migration of PC-3 cells, prevented stem cell characteristics including cell-matrix adhesion, colony formation, spheroid formation as well as CD133 and CD44 expression. PAH inhibited bone metastasis and osteoclastogenesis via repressing the activation of NF-κB pathway as well as (RANKL) – and cancer cell-induced osteoclastogenesis in PCa cells. These findings suggested the potential therapeutic effects of PAH on the metastasis of patients with PCa.
Collapse
Affiliation(s)
- Zhuoyuan Lin
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Sheng Huang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, China
| | - Xitao LingHu
- Department of Orthopedics, The Second Affiliated Hospital of Zunyi Medical University, 563003, Zunyi, China
| | - Yixiao Wang
- Department of Orthopedics, The Second Affiliated Hospital of Zunyi Medical University, 563003, Zunyi, China
| | - Bin Wang
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Shaowen Zhong
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Shangyan Xie
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Xiaohong Xu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| | - Aorigele Yu
- Graduated school of Medicine, Shimane University, 693-8501, Izumo, Japan
| | - Atsushi Nagai
- Graduated school of Medicine, Shimane University, 693-8501, Izumo, Japan
| | - Yuta Kobayashi
- Graduated school of Medicine, Shimane University, 693-8501, Izumo, Japan
| | - Qingde Wa
- Department of Orthopedics, The Second Affiliated Hospital of Zunyi Medical University, 563003, Zunyi, China
| | - Shuai Huang
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, China
| |
Collapse
|