1
|
Di Porzio A, Barrella V, Saggese A, Baccigalupi L, Cigliano L, Ricca E, Iossa S, Mazzoli A. Fructose-Induced Impairment of Liver and Skeletal Muscle Metabolism Is Prevented by Administration of Shouchella clausii Spores by Preserving Mitochondrial Function and Insulin Sensitivity. Mol Nutr Food Res 2025:e70063. [PMID: 40207597 DOI: 10.1002/mnfr.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/19/2025] [Accepted: 03/27/2025] [Indexed: 04/11/2025]
Abstract
The objective of the study was to evaluate the efficacy of S. clausii spores (SF174) in counteracting the deleterious effects of dietary fructose. Thirty-days old male Wistar rats were treated for 6 weeks: control group: 0.5 mL of 10% sucrose solution (without probiotics); fructose group: 0.5 mL of 10% sucrose solution + high-fructose diet (without probiotics); SF174 group: 0.5 mL of 10% sucrose solution containing SF174 (5 × 10⁹ CFU) + high-fructose diet. Fructose intake induced an increase in proinflammatory cytokines in portal plasma, liver, and skeletal muscle, a decrease in insulin sensitivity in both tissues and a condition of hepatic steatosis. An increase in the mitochondrial activity in the liver and a decrease in skeletal muscle were evidenced, together with an increase in the thiobarbituric acid reactive substances (TBARS) levels and a decrease in the antioxidant enzyme activity. All the above alterations were counteracted by probiotic administration. We here demonstrate for the first time that S. clausii SF174 counteracts low-grade inflammation and insulin resistance induced by fructose, protects mitochondria from changes in oxidative capacity, and maintains unaltered the oxidative balance. Therefore, S. clausii SF174 administration can be an effective strategy to prevent the unhealthy consequences of dietary fructose.
Collapse
Affiliation(s)
- Angela Di Porzio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Valentina Barrella
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Anella Saggese
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Loredana Baccigalupi
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Ezio Ricca
- Department of Biology, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Napoli, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Di Porzio A, Barrella V, Cigliano L, Mauriello G, Troise AD, Scaloni A, Iossa S, Mazzoli A. Diet-induced impairment of skeletal muscle and adipose tissue metabolic homeostasis and its prevention by probiotic administration. Pflugers Arch 2025; 477:223-239. [PMID: 39537965 DOI: 10.1007/s00424-024-03041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/27/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Western dietary pattern is one of the main contributors to the increased risk of obesity and chronic diseases, through oxidative stress and inflammation, that are the two key mechanisms targeting metabolic organs, such as skeletal muscle and adipose tissue. The chronic exposure to high levels of dietary fatty acids can increase the amount of intramyocellular lipids in skeletal muscle, altering glucose homeostasis and contributing to a reduction in mitochondrial oxidative capacity. Probiotic administration is a promising approach as preventive strategy to attenuate metabolic damage induced by Western diet. Here, we investigated the beneficial effect of Limosillactobacillus reuteri DSM 17938 on the inflammatory state and oxidative balance in the skeletal muscle and adipose tissue of adult rats fed a western diet for 8 weeks, focusing on the role of skeletal muscle mitochondria. Limosillactobacillus reuteri DSM 17938 administration protected the skeletal muscle from mitochondrial dysfunction and oxidative stress, preventing the establishment of inflammation and insulin resistance. Interestingly, a further beneficial effect of the probiotic was exerted on body composition, favoring the deposition of protein mass and preventing adipose tissue hypertrophy and inflammation. These results open the possibility for the use of this probiotic in therapeutic approaches for nutrition-related diseases.
Collapse
Affiliation(s)
- Angela Di Porzio
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
| | - Valentina Barrella
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
- National Biodiversity Future Center, 90133, Palermo, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055, Portici, Italy
| | - Antonio Dario Troise
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055, Portici, Italy
| | - Andrea Scaloni
- Proteomics, Metabolomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055, Portici, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
- National Biodiversity Future Center, 90133, Palermo, Italy.
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, 80126, Naples, Italy.
| |
Collapse
|
3
|
Ding S, Li G, Fu T, Zhang T, Lu X, Li N, Geng Q. Ceramides and mitochondrial homeostasis. Cell Signal 2024; 117:111099. [PMID: 38360249 DOI: 10.1016/j.cellsig.2024.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 02/17/2024]
Abstract
Lipotoxicity arises from the accumulation of lipid intermediates in non-adipose tissue, precipitating cellular dysfunction and death. Ceramide, a toxic byproduct of excessive free fatty acids, has been widely recognized as a primary contributor to lipotoxicity, mediating various cellular processes such as apoptosis, differentiation, senescence, migration, and adhesion. As the hub of lipid metabolism, the excessive accumulation of ceramides inevitably imposes stress on the mitochondria, leading to the disruption of mitochondrial homeostasis, which is typified by adequate ATP production, regulated oxidative stress, an optimal quantity of mitochondria, and controlled mitochondrial quality. Consequently, this review aims to collate current knowledge and facts regarding the involvement of ceramides in mitochondrial energy metabolism and quality control, thereby providing insights for future research.
Collapse
Affiliation(s)
- Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Tianyu Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiao Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
4
|
Skeletal muscle insulin resistance and adipose tissue hypertrophy persist beyond the reshaping of gut microbiota in young rats fed a fructose-rich diet. J Nutr Biochem 2023; 113:109247. [PMID: 36496062 DOI: 10.1016/j.jnutbio.2022.109247] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
To investigate whether short term fructose-rich diet induces changes in the gut microbiota as well as in skeletal muscle and adipose tissue physiology and verify whether they persist even after fructose withdrawal, young rats of 30 d of age were fed for 3 weeks a fructose-rich or control diet. At the end of the 3-weeks period, half of the rats from each group were maintained for further 3 weeks on a control diet. Metagenomic analysis of gut microbiota and short chain fatty acids levels (faeces and plasma) were investigated. Insulin response was evaluated at the whole-body level and both in skeletal muscle and epididymal adipose tissue, together with skeletal muscle mitochondrial function, oxidative stress, and lipid composition. In parallel, morphology and physiological status of epididymal adipose tissue was also evaluated. Reshaping of gut microbiota and increased content of short chain fatty acids was elicited by the fructose diet and abolished by switching back to control diet. On the other hand, most metabolic changes elicited by fructose-rich diet in skeletal muscle and epididymal adipose tissue persisted after switching to control diet. Increased dietary fructose intake even on a short-time basis elicits persistent changes in the physiology of metabolically relevant tissues, such as adipose tissue and skeletal muscle, through mechanisms that go well beyond the reshaping of gut microbiota. This picture delineates a harmful situation, in particular for the young populations, posed at risk of metabolic modifications that may persist in their adulthood.
Collapse
|
5
|
D’Ambrosio C, Cigliano L, Mazzoli A, Matuozzo M, Nazzaro M, Scaloni A, Iossa S, Spagnuolo MS. Fructose Diet-Associated Molecular Alterations in Hypothalamus of Adolescent Rats: A Proteomic Approach. Nutrients 2023; 15:nu15020475. [PMID: 36678346 PMCID: PMC9862284 DOI: 10.3390/nu15020475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The enhanced consumption of fructose as added sugar represents a major health concern. Due to the complexity and multiplicity of hypothalamic functions, we aim to point out early molecular alterations triggered by a sugar-rich diet throughout adolescence, and to verify their persistence until the young adulthood phase. METHODS Thirty days old rats received a high-fructose or control diet for 3 weeks. At the end of the experimental period, treated animals were switched to the control diet for further 3 weeks, and then analyzed in comparison with those that were fed the control diet for the entire experimental period. RESULTS Quantitative proteomics identified 19 differentially represented proteins, between control and fructose-fed groups, belonging to intermediate filament cytoskeleton, neurofilament, pore complex and mitochondrial respiratory chain complexes. Western blotting analysis confirmed proteomic data, evidencing a decreased abundance of mitochondrial respiratory complexes and voltage-dependent anion channel 1, the coregulator of mitochondrial biogenesis PGC-1α, and the protein subunit of neurofilaments α-internexin in fructose-fed rats. Diet-associated hypothalamic inflammation was also detected. Finally, the amount of brain-derived neurotrophic factor and its high-affinity receptor TrkB, as well as of synaptophysin, synaptotagmin, and post-synaptic protein PSD-95 was reduced in sugar-fed rats. Notably, deregulated levels of all proteins were fully rescued after switching to the control diet. CONCLUSIONS A short-term fructose-rich diet in adolescent rats induces hypothalamic inflammation and highly affects mitochondrial and cytoskeletal compartments, as well as the level of specific markers of brain function; above-reported effects are reverted after switching animals to the control diet.
Collapse
Affiliation(s)
- Chiara D’Ambrosio
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, 80121 Naples, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, 80121 Naples, Italy
| | - Monica Matuozzo
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Martina Nazzaro
- Department of Biology, University of Naples Federico II, 80121 Naples, Italy
| | - Andrea Scaloni
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, 80121 Naples, Italy
| | - Maria Stefania Spagnuolo
- Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy
- Correspondence:
| |
Collapse
|
6
|
Spagnuolo MS, Mazzoli A, Nazzaro M, Troise AD, Gatto C, Tonini C, Colardo M, Segatto M, Scaloni A, Pallottini V, Iossa S, Cigliano L. Long-Lasting Impact of Sugar Intake on Neurotrophins and Neurotransmitters from Adolescence to Young Adulthood in Rat Frontal Cortex. Mol Neurobiol 2023; 60:1004-1020. [PMID: 36394711 PMCID: PMC9849314 DOI: 10.1007/s12035-022-03115-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
The detrimental impact of fructose, a widely used sweetener in industrial foods, was previously evidenced on various brain regions. Although adolescents are among the highest consumers of sweet foods, whether brain alterations induced by the sugar intake during this age persist until young adulthood or are rescued returning to a healthy diet remains largely unexplored. To shed light on this issue, just weaned rats were fed with a fructose-rich or control diet for 3 weeks. At the end of the treatment, fructose-fed rats underwent a control diet for a further 3 weeks until young adulthood phase and compared with animals that received from the beginning the healthy control diet. We focused on the consequences induced by the sugar on the main neurotrophins and neurotransmitters in the frontal cortex, as its maturation continues until late adolescence, thus being the last brain region to achieve a full maturity. We observed that fructose intake induces inflammation and oxidative stress, alteration of mitochondrial function, and changes of brain-derived neurotrophic factor (BDNF) and neurotrophin receptors, synaptic proteins, acetylcholine, dopamine, and glutamate levels, as well as increased formation of the glycation end-products Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL). Importantly, many of these alterations (BDNF, CML, CEL, acetylcholinesterase activity, dysregulation of neurotransmitters levels) persisted after switching to the control diet, thus pointing out to the adolescence as a critical phase, in which extreme attention should be devoted to limit an excessive consumption of sweet foods that can affect brain physiology also in the long term.
Collapse
Affiliation(s)
- Maria Stefania Spagnuolo
- grid.419162.90000 0004 1781 6305Institute for the Animal Production System in the Mediterranean Environment, National Research Council, P.le E.Fermi 1, 80055 Portici, Italy
| | - Arianna Mazzoli
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Martina Nazzaro
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Antonio Dario Troise
- grid.419162.90000 0004 1781 6305Institute for the Animal Production System in the Mediterranean Environment, National Research Council, P.le E.Fermi 1, 80055 Portici, Italy
| | - Cristina Gatto
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Claudia Tonini
- grid.8509.40000000121622106Department of Science, Biomedical and Technology Science Section, University Roma Tre, Rome, Italy
| | - Mayra Colardo
- grid.10373.360000000122055422Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Marco Segatto
- grid.10373.360000000122055422Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Andrea Scaloni
- grid.419162.90000 0004 1781 6305Institute for the Animal Production System in the Mediterranean Environment, National Research Council, P.le E.Fermi 1, 80055 Portici, Italy
| | - Valentina Pallottini
- grid.8509.40000000121622106Department of Science, Biomedical and Technology Science Section, University Roma Tre, Rome, Italy ,grid.417778.a0000 0001 0692 3437Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Rome, Italy
| | - Susanna Iossa
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| | - Luisa Cigliano
- grid.4691.a0000 0001 0790 385XDepartment of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Edificio 7, Via Cintia - I-80126, Naples, Italy
| |
Collapse
|
7
|
Mizuno G, Yamada H, Munetsuna E, Ando Y, Teshigawara A, Ito M, Kageyama I, Nouchi Y, Wakasugi T, Sakakibara T, Yamazaki M, Fujii R, Ishikawa H, Suzuki K, Hashimoto S, Ohashi K. High-fructose corn syrup intake has stronger effects on the transcription level of hepatic lipid metabolism-related genes, via DNA methylation modification, in childhood and adolescence than in other generations. Life Sci 2022; 301:120638. [PMID: 35588866 DOI: 10.1016/j.lfs.2022.120638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/18/2022]
Abstract
AIMS This study aimed to analyze differences in sensitivity to hepatic lipid metabolism at different ages, through DNA methylation, using an experimental rat model of high-fructose corn syrup (HFCS) intake. MAIN METHODS The experimental was divided into three periods: childhood and adolescence (postnatal day (PD) 21-60), young adulthood (PD61-100), and adulthood (PD101-140). Rats in the different age groups were assigned to receive either water (C: control group) or 20% HFCS solution (H: HFCS-fed group). We measured hepatic mRNA levels of peroxisome proliferator-activated receptor alpha (Ppara), carnitine palmitoyltransferase 1A (Cpt1a), fatty acid synthase (Fasn), and peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (Pgc1a) using real-time PCR. Additionally, we examined the DNA methylation levels of Ppara, Cpt1a, Fasn, and Pgc1a using pyrosequencing. KEY FINDINGS Gene expressions of Cpt1a and Ppara in childhood and adolescence were significantly lower in the H group than in the C group. Conversely, Fasn and Pgc1a expressions were significantly higher in the H group than in the C group. Additionally, there was hypermethylation of Cpt1a and Ppara and hypomethylation of Fasn and Pgc1a in the H groups of childhood and adolescence. However, only one gene expression and methylation change was observed in young adulthood and adulthood groups. We found that HFCS intake in rats had stronger lipid metabolic effects in childhood and adolescence than in other generations, and that its mechanism involved epigenetic regulation. SIGNIFICANCE We anticipate that these research findings will be a breakthrough for elucidating the varying effects of growth stage in the future.
Collapse
Affiliation(s)
- Genki Mizuno
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan; Department of Medical Technology, Tokyo University of Technology School of Health Sciences, 5-23-22 Nishi-Kamata, Ota, Tokyo 144-8535, Japan
| | - Hiroya Yamada
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan.
| | - Eiji Munetsuna
- Department of Biochemistry, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yoshitaka Ando
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Atsushi Teshigawara
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University Hospital, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Manaka Ito
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Itsuki Kageyama
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Yuki Nouchi
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Takuya Wakasugi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Tomohide Sakakibara
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Mirai Yamazaki
- Department of Medical Technology, Kagawa Prefectural University of Health Sciences, 281-1 Hara, Mure Town Takamatsu, Kagawa 761-0123, Japan
| | - Ryosuke Fujii
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Hiroaki Ishikawa
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Suzuki
- Department of Preventive Medical Sciences, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Shuji Hashimoto
- Department of Hygiene, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| | - Koji Ohashi
- Department of Informative Clinical Medicine, Fujita Health University School of Medical Sciences, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi 470-1192, Japan
| |
Collapse
|
8
|
Hattori H, Hanai Y, Oshima Y, Kataoka H, Eto N. Excessive Intake of High-Fructose Corn Syrup Drinks Induces Impaired Glucose Tolerance. Biomedicines 2021; 9:biomedicines9050541. [PMID: 34066196 PMCID: PMC8150719 DOI: 10.3390/biomedicines9050541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
The number of patients with diabetes was approximately 463 million worldwide in 2019, with almost 57.6% of this population concentrated in Asia. Asians often develop type 2 diabetes (T2D), even if they are underweight and consume a smaller amount of food. Soft drinks contain large amounts of sweeteners, such as high-fructose corn syrup (HFCS). Excessive intake of HFCS drinks is considered to be one of the causes of T2D. In the present study, we investigated the effect of excessive consumption of HFCS-water on glucose tolerance and obesity under conditions of controlled caloric intake using a mouse model. Three-week-old male ICR mice were divided into two groups and given free access to 10% HFCS-water or deionized water. The caloric intake was adjusted to be the same in both groups using a standard rodent diet. The excess HFCS-water intake did not lead to obesity, but led to impaired glucose tolerance (IGT) due to insulin-secretion defect. It affected glucose and fructose metabolism; for example, it decreased the expression of glucokinases, ketohexokinase, and glucose transporter 2 in the pancreas. These results suggest that excessive consumption of HFCS drinks, such as soft drinks, without a proper diet, induces nonobese IGT due to insulin-secretion defect.
Collapse
Affiliation(s)
- Hidemi Hattori
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (Y.H.); (Y.O.); (N.E.)
- Correspondence: ; Tel.: +81-985-58-7255
| | - Yuma Hanai
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (Y.H.); (Y.O.); (N.E.)
| | - Yuto Oshima
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (Y.H.); (Y.O.); (N.E.)
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Nozomu Eto
- Department of Biochemistry and Applied Biosciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan; (Y.H.); (Y.O.); (N.E.)
| |
Collapse
|