1
|
AlAshqar A, Lulseged B, Mason-Otey A, Liang J, Begum UAM, Afrin S, Borahay MA. Oxidative Stress and Antioxidants in Uterine Fibroids: Pathophysiology and Clinical Implications. Antioxidants (Basel) 2023; 12:antiox12040807. [PMID: 37107181 PMCID: PMC10135366 DOI: 10.3390/antiox12040807] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
In the last few decades, our understanding of the complex pathobiology of uterine fibroid development has grown. While previously believed to be a purely neoplastic entity, we now understand that uterine fibroids possess different and equally important aspects of their genesis. An increasing body of evidence suggests that oxidative stress, the imbalance between pro- and antioxidants, is an important factor in fibroid development. Oxidative stress is controlled by multiple, interconnecting cascades, including angiogenesis, hypoxia, and dietary factors. Oxidative stress in turn influences fibroid development through genetic, epigenetic, and profibrotic mechanisms. This unique aspect of fibroid pathobiology has introduced several clinical implications, both diagnostic and therapeutic, that can aid us in managing these debilitating tumors by using biomarkers as well as dietary and pharmaceutical antioxidants for diagnosis and treatment. This review strives to summarize and add to the current evidence revealing the relationship between oxidative stress and uterine fibroids by elucidating the proposed mechanisms and clinical implications.
Collapse
|
2
|
Zlatić G, Martinović I, Pilić Z, Paut A, Mitar I, Prkić A, Čulum D. Green Inhibition of Corrosion of Aluminium Alloy 5083 by Artemisia annua L. Extract in Artificial Seawater. Molecules 2023; 28:molecules28072898. [PMID: 37049660 PMCID: PMC10095662 DOI: 10.3390/molecules28072898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Plant extracts are increasingly being examined in the corrosion inhibition of metal and alloys in various environments due to their potent antioxidant properties. The use of Artemisia annua L. aqueous extract (AAE) as an aluminium alloy 5083 (ALA) corrosion inhibitor in artificial seawater (ASW) was investigated using electrochemical tests and spectroscopy tools, while the active biocompounds found in AAE were analyzed using high-performance liquid chromatography (HPLC). Electrochemical results showed that AAE acts as an anodic inhibitor through the physisorption (ΔG ≈ –16.33 kJ mol−1) of extract molecules on the ALA surface, thus reducing the active sites for the dissolution of the alloy in ASW. Fourier-transform infrared spectra confirmed that phenolic acids found in AAE formed the surface layer that protects ALA against the corrosive marine environment, while HPLC analysis confirmed that the main phytoconstituents of AAE were chlorogenic acid and caffeic acid. The inhibition action of phenolic acids and their derivatives found in the AAE was based on the physisorption of caffeic acid on the ALA surface, which improved physicochemical properties of the barrier film and/or conversion of Al3+ to elemental aluminium by phenolic acids as reducens, which slowed down the diffusion rate of Al3+ to or from the ALA surfaces. The protective effect of the surface layer formed in the presence of AAE against ASW was also confirmed by inductively coupled plasma–optical emission spectrometry (ICP-OES) whereby the measured concentration of Al ions after 1 h of immersion of ALA in the pure ASW was 15.30 μg L−1 cm−2, while after the addition of 1 g L−1 AAE, the concentration was 3.09 μg L−1 cm−2.
Collapse
|
3
|
Yang Q, Al-Hendy A. Update on the Role and Regulatory Mechanism of Extracellular Matrix in the Pathogenesis of Uterine Fibroids. Int J Mol Sci 2023; 24:5778. [PMID: 36982852 PMCID: PMC10051203 DOI: 10.3390/ijms24065778] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/22/2023] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
Uterine fibroids (UFs), also known as leiomyomas, are benign tumors of the myometrium affecting over 70% of women worldwide, particularly women of color. Although benign, UFs are associated with significant morbidity; they are the primary indication for hysterectomy and a major source of gynecologic and reproductive dysfunction, ranging from menorrhagia and pelvic pain to infertility, recurrent miscarriage, and preterm labor. So far, the molecular mechanisms underlying the pathogenesis of UFs are still quite limited. A knowledge gap needs to be filled to help develop novel strategies that will ultimately facilitate the development of therapies and improve UF patient outcomes. Excessive ECM accumulation and aberrant remodeling are crucial for fibrotic diseases and excessive ECM deposition is the central characteristics of UFs. This review summarizes the recent progress of ascertaining the biological functions and regulatory mechanisms in UFs, from the perspective of factors regulating ECM production, ECM-mediated signaling, and pharmacological drugs targeting ECM accumulation. In addition, we provide the current state of knowledge by discussing the molecular mechanisms underlying the regulation and emerging role of the extracellular matrix in the pathogenesis of UFs and in applications. Comprehensive and deeper insights into ECM-mediated alterations and interactions in cellular events will help develop novel strategies to treat patients with this common tumor.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA;
| | | |
Collapse
|
4
|
Zhou X, Qiao K, Wu H, Zhang Y. The Impact of Food Additives on the Abundance and Composition of Gut Microbiota. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020631. [PMID: 36677689 PMCID: PMC9864936 DOI: 10.3390/molecules28020631] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
The gut microbiota has been confirmed as an important part in human health, and is even take as an 'organ'. The interaction between the gut microbiota and host intestinal environment plays a key role in digestion, metabolism, immunity, inflammation, and diseases. The dietary component is a major factor that affects the composition and function of gut microbiota. Food additives have been widely used to improve the color, taste, aroma, texture, and nutritional quality of processed food. The increasing variety and quantity of processed food in diets lead to increased frequency and dose of food additives exposure, especially artificial food additives, which has become a concern of consumers. There are studies focusing on the impact of food additives on the gut microbiota, as long-term exposure to food additives could induce changes in the microbes, and the gut microbiota is related to human health and disease. Therefore, the aim of this review is to summarize the interaction between the gut microbiota and food additives.
Collapse
Affiliation(s)
- Xuewei Zhou
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Kaina Qiao
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Huimin Wu
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Correspondence:
| |
Collapse
|
5
|
Vlaicu PA, Untea AE, Turcu RP, Panaite TD, Saracila M. Rosehip ( Rosa canina L.) Meal as a Natural Antioxidant on Lipid and Protein Quality and Shelf-Life of Polyunsaturated Fatty Acids Enriched Eggs. Antioxidants (Basel) 2022; 11:1948. [PMID: 36290672 PMCID: PMC9598169 DOI: 10.3390/antiox11101948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Eggs are a common food of animal origin, inexpensive, and rich in bioactive substances with high biological value. Eggs enriched in polyunsaturated fatty acids (PUFA) are extremely desired by the progressive consumer. However, during storage, eggs undergo some physiochemical changes, which decrease their value. In this regard, the effect of dietary rosehip meal and flaxseed meal on hens’ egg quality characteristics, amino acids, fatty acids, health-related indices, antioxidant capacity, total polyphenols content, and shelf life was examined. For this study 120 Tetra SL laying hens, 29 weeks of age, were fed, for 4 weeks, three diets that included control (basal diet—RF0), basal diet + 1.5% rosehip and 7% flaxseed meal (RF1), and basal diet + 3% rosehip and 7% flaxseed meal (RF2). Productive performance of hens were recorded. The content of essential amino acids (EAA), antioxidant amino acids (AAA), and sulfur amino acids (SAA) was higher in RF1 and RF2, compared with RF0. Eggs belonging to the RF1 and RF2 groups had significantly (p < 0.05) higher content of n-3 PUFAs, especially linolenic and docosahexaenoic acids. Total antioxidant capacity and polyphenol content increased in both rosehip supplemented groups, but especially in RF2. Moreover, eggs from RF1 and RF2 groups maintained significantly higher egg quality parameters after storage for 14 and 28 days in the refrigerator (5 °C) and ambient temperature (21 °C), compared with those from the RF0 group. In the Haugh unit, yolk and albumen pH presented better values in RF1 and RF2 eggs compared to the RF0 eggs.
Collapse
Affiliation(s)
- Petru Alexandru Vlaicu
- Feed and Food Quality Department, National Research-Development Institute for Animal Biology and Nutrition, 077015 Balotesti, Romania
| | - Arabela Elena Untea
- Feed and Food Quality Department, National Research-Development Institute for Animal Biology and Nutrition, 077015 Balotesti, Romania
| | | | | | | |
Collapse
|
6
|
Ahmed SA, Shaker SE, Shawky H. Solvent polarity dictates the anti-inflammatory potency and mechanism of two purslane (Portulaca oleracea) seed extracts. J Food Biochem 2022; 46:e14281. [PMID: 35735134 DOI: 10.1111/jfbc.14281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
Abstract
This study aimed to assess the effect of solvent polarity on anti-inflammatory potency and the underlying mechanisms of two purslane seed extracts. Methanol and dichloromethane extracts were prepared using Soxhlet extraction and chromatographically analyzed. Antioxidant activities were assessed by different assays, while the anti-inflammatory potentials were assessed in RAW 264.7 macrophage cells. Methanol extraction yielded 15.5% water-soluble extract while dichloromethane produced 3.74% fixed oil. Nineteen phenolic compounds were chromatographically identified in methanol extract compared with 16 in the fixed oil including omega fatty acids and phytosterols. Methanol extract showed significantly higher capacity in radical scavenging assays (p < .001), but the fixed oil showed higher total antioxidant capacity (p < .001). Both extracts demonstrated anti-inflammatory potentials with different mechanisms, where the phenol-rich methanol extract significantly reduced TNF-α (p = .0371) and IL-1β (p = .0029) production through an antioxidant-mediated pathway, while the fixed oil inhibited COX1, COX2, and PGE2 gene expression through the upregulation of IL-10. PRACTICAL APPLICATIONS: Both purslane extracts presented herein demonstrated remarkable antioxidant/ anti-inflammatory potentials that could be safely utilized as natural antioxidants and inflammation remedies or as functional food products, particularly that they showed no cytotoxic effects.
Collapse
Affiliation(s)
- Samia A Ahmed
- Therapeutic Chemistry Department, National Research Centre, Pharmaceutical and Drug Industries Research Institute, Cairo, Egypt
| | - Sylvia E Shaker
- Therapeutic Chemistry Department, National Research Centre, Pharmaceutical and Drug Industries Research Institute, Cairo, Egypt
| | - Heba Shawky
- Therapeutic Chemistry Department, National Research Centre, Pharmaceutical and Drug Industries Research Institute, Cairo, Egypt
| |
Collapse
|
7
|
Vieira IRS, de Carvalho APAD, Conte-Junior CA. Recent advances in biobased and biodegradable polymer nanocomposites, nanoparticles, and natural antioxidants for antibacterial and antioxidant food packaging applications. Compr Rev Food Sci Food Saf 2022; 21:3673-3716. [PMID: 35713102 DOI: 10.1111/1541-4337.12990] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 12/20/2022]
Abstract
Inorganic nanoparticles (NPs) and natural antioxidant compounds are an emerging trend in the food industry. Incorporating these substances in biobased and biodegradable matrices as polysaccharides (e.g., starch, cellulose, and chitosan) and proteins has highlighted the potential in active food packaging applications due to more significant antimicrobial, antioxidant, UV blocking, oxygen scavenging, water vapor permeability effects, and low environmental impact. In recent years, the migration of metal NPs and metal oxides in food contact packaging and their toxicological potential have raised concerns about the safety of the nanomaterials. In this review, we provide a comprehensive overview of the main biobased and biodegradable polymer nanocomposites, inorganic NPs, natural antioxidants, and their potential use in active food packaging. The intrinsic properties of NPs and natural antioxidant actives in packaging materials are evaluated to extend shelf-life, safety, and food quality. Toxicological and safety aspects of inorganic NPs are highlighted to understand the current controversy on applying some nanomaterials in food packaging. The synergism of inorganic NPs and plant-derived natural antioxidant actives (e.g., vitamins, polyphenols, and carotenoids) and essential oils (EOs) potentiated the antibacterial and antioxidant properties of biodegradable nanocomposite films. Biodegradable packaging films based on green NPs-this is biosynthesized from plant extracts-showed suitable mechanical and barrier properties and had a lower environmental impact and offered efficient food protection. Furthermore, AgNPs and TiO2 NPs released metal ions from packaging into contents insufficiently to cause harm to human cells, which could be helpful to understanding critical gaps and provide progress in the packaging field.
Collapse
Affiliation(s)
- Italo Rennan Sousa Vieira
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Anna Paula Azevedo de de Carvalho
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil
| | - Carlos Adam Conte-Junior
- Analytical and Molecular Laboratorial Center (CLAn), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, Brazil.,Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ, Brazil.,Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
8
|
Dietary Natural Compounds and Vitamins as Potential Cofactors in Uterine Fibroids Growth and Development. Nutrients 2022; 14:nu14040734. [PMID: 35215384 PMCID: PMC8880543 DOI: 10.3390/nu14040734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
An analysis of the literature generated within the past 20 year-span concerning risks of uterine fibroids (UFs) occurrence and dietary factors was carried out. A link between Vitamin D deficiency and UFs formation is strongly indicated, making it a potent compound in leiomyoma therapy. Analogs of the 25-hydroxyvitamin D3, not susceptible to degradation by tissue 24-hydroxylase, appear to be especially promising and tend to show better therapeutic results. Although research on the role of Vitamin A in the formation of fibroids is contradictory, Vitamin A-enriched diet, as well as synthetic retinoid analogues, may be preventative or limit the growth of fibroids. Unambiguous conclusions cannot be drawn regarding Vitamin E and C supplementation, except for alpha-tocopherol. Alpha-tocopherol as a phytoestrogen taking part in the modulation of estrogen receptors (ERs) involved in UF etiology, should be particularly avoided in therapy. A diet enriched in fruits and vegetables, as sources of carotenoids, polyphenols, quercetin, and indole-3-carbinol, constitutes an easily modifiable lifestyle element with beneficial results in patients with UFs. Other natural substances, such as curcumin, can reduce the oxidative stress and protect against inflammation in leiomyoma. Although the exact effect of probiotics on uterine fibroids has not yet been thoroughly evaluated at this point, the protective role of dairy products, i.e., yogurt consumption, has been indicated. Trace elements such as selenium can also contribute to antioxidative and anti-inflammatory properties of a recommended diet. In contrast, heavy metals, endocrine disrupting chemicals, cigarette smoking, and a diet low in antioxidants and fiber were, alongside genetic predispositions, associated with UFs formation.
Collapse
|